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1. Domains without Cauchy formula for Smirnov class
functions

Let Ω = C \ E ,E ⊂ R, be a multiply (infinitely) connected domain.
E is a closed set of positive length. We deal with multiple-valued
holomorphic (meromorphic) functions f in Ω such that |f | is
single-valued. Then of course for ω(γ) ∈ R, γ is a closed loop in Ω:

f ◦ γ(z) = e2πiω(γ)f (z), γ ∈ Γ =fundamental group of Ω.

Then
α(γ) := e2πiω(γ) : Γ→ T

is a character of fundamental group Γ. The group of characters
will be called Γ∗. So our main object will be holomorphic
(meromorphic) functions which are character-automorphic:

f ◦ γ = α(γ)f .
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2. Smirnov class

Holomorphic character-automorphic function f in Ω is called of
Smirnov class if it is of bounded characteristic, namely, f = h1/h2,
hi are bounded character-automorphic holomorphic functions in Ω,
and on the top of that h2 does not have inner part in its
inner-outer factorization. If by z : D→ Ω we denote the universal
covering map, z(0) =∞, z′(0) > 0. One may understand the
inner-outer factorization in terms of inner-outer factorization (due
to A. Beurling) of the analytic function h = g ◦ z in the disc D.
Hardy classes Hp of holomorphic functions with |h|p having finite
harmonic majorant, acquire extra feature:
h ◦ γ(z) = α(γ)h(z), z ∈ D, γ’s are elements of Fuchsian group of
Möbius maps of D to itself, we call this Fuchsian group Γ, it is
isomorphic to fundamental group of Ω, and Ω = D/Γ. As before
α ∈ Γ∗, the group of characters. So g → h = g ◦ z makes a single
valued function h from multiple valued g , but h has some
“periodicity” property in the disc. We of course call such functions
character-automorphic (w.r.to Fuchsian Γ) in D.

Alexander Volberg Solving a problem of Kotani–Last



3. Cauchy formula

f (ζ) =
1

2πi

∫
T

f (η)

η − ζ dη

is valid for many holomorphic functions in the disc, but not for all.
Obviously we need f (η) ∈ L1(T,m) (m is Lebesgue measure on T).
But this is not enough, (Ms(T)= singular measures on T.)

h(z) = e
1+z
1−z , or h(z) = e

∫
T

1+zeiθ

1−zeiθ
dµ(θ)

, µ ∈ Ms(T)

are all in L∞(T), moreover |h(e iφ| = 1 for m-a.e. e iφ ∈ T but the
Cauchy formula is false for them. V.I. Smirnov found a simple
necessary and sufficient condition for having Cauchy formula over
the boundary: 1) h ∈ L1(on the boundary), 2)
h ∈ Smirnov class in the domain. He did this for simply connected
domains with finite length boundary. Finitely connected domains
are ok too. Jumping ahead: some very good infinitely connected
domains fail to have this property. These will be our main culprits.
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4. Domains without Cauchy formula. No DCT domains

We saw that h ∈ Smirnov class in Ω is crucial even for the simplest
Ω = D. But there are simple and very good in all other respects
domains Ω = C \ E , where the Cauchy formula fails for very good
(Smirnov class and L1(∂Ω)) functions. Here E will be a sequence
of segments on R converging to 0, and also [0, 1] ⊂ E . Then
|E | <∞, and we build the example Benedicks’ theorem, 1980:

Theorem

Let O = (C \ [0,∞)) \ ∪∞m=1[−m − dm,−m + dm], such that
dm ≤ 1/4, dk � dm, k � m. Consider Martin function

M(z) := lim
y→∞

G (z , iy) + G (z ,−iy)

2G (0, iy)

Then M(z) ≈ |y | iff
∑∞

m=1
log 1/dm

m2 <∞.

Growth |y | is maximal possible for Ω ⊃ C+. Martin functions are
extremal points of the cone of positive harmonic functions in Ω.
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5. This is counterintuitive.

The maximal growth should be reserved for “thick” boundaries at
∞, e. g. like O = C \ ([0,∞) ∪ (−∞,−1]). In Benedicks’ theorem
above, dm can be chosen

dm ≈ e−
√
m, or dm ≈ e−m

1−δ

easily. This is the choice we will make. Domain with such dm looks
“almost” like O = C \ [0,∞), for which Martin function has a
much slower growth: M(z) ≈

√
|y |. Making the domain only

slightly smaller with sub-exponentially small dm as above “boosts”
Martin function to M(z) ≈ |y |. How to use this effect? Consider
c ∈ (−1 + d1, 0) and map just constructed O = C \ E by w = 1

z−c
onto Ω = C \ Ẽ , Ẽ := w(E ). It is a set formed by [0, |c−1|] and a
sequence of sub-exp. small segments converging to 0, the length of
the m-th segment is ≈ e

√
m/m2.
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6. Good function in Ω without Cauchy formula

Put F (z) := cos
√

c − cos
√

z , with an obvious choice of the
branch of

√
z it is analytic function in O. And as

F (x + i0) = F (x − i0), x ∈ E (we use that it is a cos!) and we use
that ≈ e

√
m/m2–smallness kills growth of cosh:

1)

∫
E

|F (x)|
(x − c)2

dx <∞ , 2)

∮
F (x)

(x − c)2
dx = 0, 2) F (c) = 0,F ′(c) 6= 0.

Changing variable we gat Φ(w) = F ( 1
w + c) in Ω with the

compact boundary Ẽ such that

1)

∫
Ẽ
|Φ(u)| du <∞, 2)

∮
Ẽ

Φ(u)du = 0, 3)Φ(w) ≈ F ′(c)

w
+O(

1

w 2
),w ≈ ∞.

Put G (w) := (w − w0)Φ(w)− F ′(c),w0 ∈ Ω. Then G (∞) = 0
and

∫
Ẽ |G |du <∞, but Cauchy formula does not, however, hold:∮

Ẽ

G (w)dw

w − w0
=

∮
Ẽ

Φ(w)dw = 0 6= −F ′(c) = G (w0).
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7. Why Φ and G are in Smirnov class in Ω = C \ Ẽ?

To be in Smirnov class is a conformal invariant property. So it is
enough to check that F (z) = cos

√
c − cos

√
z ∈ Smirnov(O). But

F =C−cos
√

z ; cos
√

z =
e2i
√
z + 1

e i
√
z

, ratio of two bounded functions in O.

Notice that log |Denominator| ≈
√
|y | << M(z) ≈ |y | by

Benedicks’ theorem. But the inner part of the Denominator e i
√
z

can hide only at infinity and can be only of the type
e−a(M(z)+iM̃(z)), where M̃ is the harmonic conjugate to M and
a > 0. If so, then it must be that log |Denominator| ≈ a|y |, a > 0.
Contradiction.
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8. Our Ω is a very good domain. It is a Widom domain.

Question: In which domains any character α ∈ Γ∗ arises as a
character of nice character automorphic function? Widom
answered in Ann. of Math. 1971:

∀α ∈ Γ∗∃h ∈ H∞(α), h 6= 0 iff
∑

∇G(c)=0

G (c) <∞.

Here G (z) = G (z , a), we let a =∞ ∈ Ω. Let {ci} be critical
points of G (z). So Ω is Widom iff the character-automorphic
Blaschke product

∆Ω := e−
∑∞

i=1 G(z,ci )+i G̃(z,ci ) converges z ∈ Ω

One of the main player will be

∆ := ∆Ω ◦ z : D→ D

the character-automorphic Blaschke product in D. Its character
will be denoted by letter ν, ν ∈ Γ∗.
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9. Widomness and finite entropy

Theorem

For a plain domain such that E := ∂Ω ⊂ R TFAE: 1) Ω is a
Widom domain, 2) there is a conformal map of C+ onto a comb
domain such that E goes to its base, gaps go to “teeth”, and the
comb has locally rectifiable boundary, 3) the entropy of harmonic
measure is finite:

∫
∂Ω logω(x)ω(x)dx <∞, ω being the density of

dω(x ,∞) with respect to the length dx, 4)∫
0 Betti(G (z) > t)dt <∞.

Sketch of proof 1)⇒ 3). Put ω(x) := ∂G
∂n (x), Ω′: = Ω \ D(0,R).

Then∫
E
ω0(x) logω0(x)dx =

∫
E

∂G

∂n
log

∂G

∂n
dx = Const+

∫
E

G
∂

∂n
log

∂G

∂n
+

∫
Ω′

∆G log |∇G (z)| −
∫

Ω′
G ∆ log |∇G (z)| = Const +

∞∑
i=1

G (ci , 0).
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10. Widom and Hardy classes of ch.-automorphic functions

Theorem

1) infα∈Γ∗ supf ∈H∞(α),‖f ‖∞≤1 |f (0)| = |∆(0)| > 0 iff Ω is Widom.
2) Let Ω = C \ E ,E ⊂ R, E := [b0, a0] \ ∪∞j=1(aj , bj), a0 = 1.

Then θ := −G̃ (z) + iG (z) is the conformal map of C+ onto comb
(−π, 0,∞) with teeth of the height G (ci ). It maps gaps (aj , bj)
into j-th tooth of the comb.

Notations. bΩ := e iθ(z), b = bΩ ◦ z. It is a ch.-autom. Blaschke
product in D w.r. to Fuchsian group Γ:
b ◦ γ(ζ) = µ(γ)b(ζ), ζ ∈ D, γ ∈ Γ. Letter µ denotes the character
of b. So

∆ ∈ H∞(ν), b ∈ H∞(µ)

µ(γj) =: e−2πiωj , ωj = ωΩ([bj , a0],∞),

where γj corresponds to a loop going through the gap (aj , bj) and,
say, point 2014.
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10a. Picture of the conformal map θ : C+ → Hedgehog

0 1
−π 0x
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11. Group orbits

Fix z0 ∈ Ω. Put orb(ζ0) = z−1(z0) = {γ(ζ0)}γ∈Γ be the orbit of a
point in D under the Fuchsian group. One can define the Blaschke
product with zeros on this orbit: log |bz0(ζ)|−1 = G (z(ζ), z0). If, as
always, cj are critical points of G (z) = G (z ,∞), then

∆(ζ) = Π∞j=1bcj (ζ),

b(ζ) = b∞(ζ).

Simple facts. bΩ = e−G−i G̃ , b′Ω = |∇G | on E . Pommerenke: b′

is Smirnov for Widom domains, the inner part of b′Ω is ∆Ω, the
inner part of b′ is ∆. Let φ be analytic ch.-automorphic in Ω.
Then (denoting D(Ω) := Smirnov(Ω))

φ ∈ D(Ω)⇔ φ(b′Ω)out ∈ D(Ω)⇔ φb′Ω
∆Ω
∈ D(Ω)⇔ φb′Ω

∆ΩbΩ
∈ D(Ω)⇔

In fact, bΩ in denominator can only introduce Blaschke zeros, no
singular inner parts. But the only zero got cancelled out:
b′Ω(z) ≈ 1

z2 , bΩ(z) ≈ 1
z at ∞.

The display line can be rewritten in terms of D as in the following
slide:

Alexander Volberg Solving a problem of Kotani–Last



12. Change of variable

Let f = φ ◦ z, then f ∈ H1(ν)⇔
∫
T |f |dm <∞, f ∈ D(D). This is

the same that

φ ∈ D(Ω), and

∫
E
|φ|dω(x) <∞.

Therefore, this is the same that (recall that |b′Ω| = |∇G | on E )

F :=
φb′Ω

∆ΩbΩ
∈ D(Ω), and

∫
E
|F |dx <∞

Also change of variable in integral without absolute values gives
|b′Ω(x)|dx = dω(x) = dm(θ) if z(e iθ) = x , and
b′Ω(x)/bΩ(x) = i |b′Ω(x)|, thus we have

1

2πi

∮
F (x)dx =

1

2π

∫ 2π

0

f

∆
dθ, F (z) ≈ f (0)/∆(0)

z
+ O(

1

z2
).
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frame
13. No DCT (= no direct Cauchy theorem)

Definition. We say that domain Ω = C \ E ,∞ ∈ Ω, has no DCT
if there exist F analytic in Ω, F ∈ D(Ω),

∫
E |F (x)| dx <∞,

F (z) ≈ A
z + O( 1

z2 ), but ∮
E

F (x)dx 6= A.

By considering G (z) := (z − z0)F (z)− A we see that no DCT is
exactly the same that the Cauchy formula does not hold for some
Smirnov class functions summable on the boundary. By the slides
11, 12 we proved the following theorem:
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14. No DCT domains

Theorem

TFAE: 1) Domain Ω has no DCT, 2) the Cauchy formula fails for
some functions from Smirnov class integrable on the boundary, 2)
for some functions f ∈ H1(ν) in D, where ν is the character of ∆
constructed on slide 8 the following formula must fail:∫

T

f (ζ)

∆(ζ)
dm(ζ) =

f (0)

∆(0)
,

4) for some functions f ∈ H1
0 (ν) (meaning f (0) = 0) in D, where ν

is the character of ∆ constructed on slide 8 the following formula
must fail: ∫

T

f (ζ)

∆(ζ)
dm(ζ) = 0.

Proof was done. Notice 3)⇔ 4) by f1 := f − f (0)∆ ∈ H1
0 (ν) iff

f ∈ H1(ν).
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15. Our Ω = w(O),w = 1/(z − c) is a Widom domain

Fix a character α ∈ Γ∗. Notice that Benedicks construction allows
to have Ω Widom. In fact Widomness is conformal invariant, so
O = (C \ [0,∞)) \ ∪m=1∞[−m − dm,m + dm], small dm, has to
be Widom. This is so by the theorem of Koosis.

Theorem

Domain Ω = C \ E ,E ⊂ R, a ∈ Ω has Martin function M(z) such
that M(z) ≈ |y | iff ∫

R
G (x , a)dx <∞.

As our choice of dm ensures the this growth of Martin function,
slide 5, we conclude that

∫
R G (x , c)dx < infty . Critical points ei of

G (z , c) lie by one in each E -complementary interval (gap)
Li := (Ai ,Bi ), G is concave on Li , G (ei , c) = maxx∈Li G (x , c).
Therefore,

∑
i G (ei , c)Li ≤

∫
R G (x , c)dx < infty . But obviously

|Li | ≥ 1/2 as all dm ≤ 1/4. So O ∈ Widom, so is Ω = w(O).
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16. Natural Hardy spaces: Ĥ2(α)

Functions from the usual Hardy space H2 in the disc, which have
character-automorphic property:

h ◦ γ(ζ) = α(γ)h(ζ), ζ ∈ D, γ ∈ FuchsianΓ, α ∈ Γ∗

form a closed subspace of the usual H2. We call it hat-space. It
the largest natural space of ch.-automorphic functions in H2 with
character automorphism α.
Recall that with the usual duality annihilator of H2 is H̄2

0 . Can it be
that annihilator of Ĥ2(α) is something like Ĥ2

0 (α−1)? Not at all.
First of all our ubiquitous Widom function ∆ intervenes. Slide 8.
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17. Check spaces Ȟ2(α)

Theorem

The annihilator to Ĥ2
0 (α) consists of functions ∆φ̄1 such that

φ1 ∈ Ĥ2(α−1ν) and such that∫
T

φ1φ0

∆
dm = 0, ∀φ0 ∈ Ĥ2

0 (α).

The fact that ∀α ∈ Γ∗ this annihilator is equal to the whole

∆Ĥ2(α−1ν) is equivalent to∫
T

f

∆
dm = 0, ∀f ∈ Ĥ1

0 (ν).

Corollary

If Ω is a Widom domain with no DCT, then annihilator of
Ĥ2

0 (να−1) for a certain α ∈ Γ∗ is a proper closed subspace of

∆Ĥ2(α). Call it ∆Ȟ2(α).
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18. Check spaces Ȟ2(α)

In fact, we saw (slide 14) that no DCT means the existence of
f ∈ Ĥ1

0 (ν) such that
∫
T

f
∆ dm 6= 0. Let us factorize this f = h0h1,

h1 := (f )
1/2
out , then automatically h1 is modulo automorphic:

|h1 ◦ γ| = |h1|, then so is h0, then they are both
character-automorphic.
Let the character of h1 be α, then the character of h0 has to be
α−1ν. Then h0 ∈ Ĥ2

0 (α−1ν), h1 ∈ Ĥ2(α), but ∆h̄1 is not in
annihilator of Ĥ2

0 (α−1ν). So the annihilator of Ĥ2
0 (α−1ν) is strictly

smaller than ∆Ĥ2(α). This is why it deserves a new name: and
the space Ȟ2(α) appears.
The space Ȟ2(α) is the smallest natural closed subspace of H2

having α-automorphic property. Domain is no DCT iff

∃α ∈ Γ∗ : Ȟ2(α) ( Ĥ2(α).
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19. Check spaces Ȟ2(α)

We just repeat what has been already said: Ȟ2(α) is the collection
of character automorphic functions f from H2 with character α,
such that ∫

T

fg0

∆
dm = 0, ∀g0 ∈ Ĥ2

0 (α−1ν).

Symmetrically, we will see that Ĥ2(α) is the collection of character
automorphic functions f from H2 with character α, such that∫

T

fg0

∆
dm = 0, ∀g0 ∈ Ȟ2

0 (α−1ν).
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20. Properties of check and hat spaces Ȟ2(α), Ĥ2(α)

Theorem

1) ∆Ȟ2(α) is the annihilator of Ĥ2
0 (α−1ν).

2) ∆Ȟ2
0 (α) is the annihilator of Ĥ2(α−1ν).

3) ∆Ĥ2(α) is the annihilator of Ȟ2
0 (α−1ν).

4) ∆Ĥ2(α) is the annihilator of Ȟ2
0 (α−1ν).

5) Ȟ2(α) is the closure of Pα(∆H∞), where Pα projection L1(T)
onto L1(α) is given by

Pα(f ) :=
∑
γ∈Γ

α−1(γ)|γ′|f ◦ γ∑
γ∈Γ |γ′|

, ζ ∈ T.

6) zĤ2
0 (α) ⊂ Ĥ2(α).

7) zȞ2
0 (α) ⊂ Ȟ2(α).
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21. Divisibility property I.

1) Ĥ2
0 (α) = bĤ2(αµ−1).

2) Ȟ2
0 (α) = bȞ2(αµ−1). Only 2) should be proved. Let us prove

that if φ = bφ̃ and φ is in check space, then φ̃ is also in check
space. First prove ∫

φΦ

∆
= 0, ∀Φ ∈ Ĥ2(α−1ν). (1)

Write Φ = Φ− Φ(0)k̂α
−1

∆

∆(0)k̂α−1 (0)
+ Φ(0)k̂α

−1
∆

∆(0)k̂α−1 (0)
=: Φ1 + Φ2. Then

Φ1 ∈ Ĥ2
0 (α−1ν), so

∫ φΦ1
∆ = 0 by the definition of check space.

And ∫
T

φΦ2

∆
= c

∫
T
φk̂α

−1
= c

∫
T

bφ̃k̂α
−1

= bφ̃k̂α
−1

(0) = 0 .

So (1) is proved. Rewrite it as
∫
T
φ̃bΦ

∆ = 0, but bΦ runs over all

Ĥ2
0 (α−1νµ) as division is possible in hat spaces. So φ̃ belongs to

Ȟ2(αµ−1) by the definition of what is check.
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22. Divisibility property II.

Theorem

1) zĤ2
0 (α) ⊂ Ĥ2(α).

2) zȞ2
0 (α) ⊂ Ȟ2(α).

Again only 2) should be proved. We know that
Ȟ2

0 (α) = bȞ2(αµ−1). Also it is clear that zb = (zbΩ) ◦ z, so
zb ∈ H∞(µ). We now see that
zȞ2

0 (α) = zbȞ2(αµ−1) ⊂ H∞(µ)Ȟ2(αµ−1). The space H∞(µ)
multiplies hat spaces obviously. So by the description of the
annihilators

∫
T φ1φ0∆ = 0 on slide 17, it also multiplies check

spaces.
We are done with 2).
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23. Our H2(α) spaces and reflectionless Jacobi matrices

We call a closed subspace H2(α), our Hardy space with character
α if

1) Ȟ2(α) ⊂ H2(α) ⊂ Ĥ2(α),

2) zH2
0 (α) ⊂ H2(α).

Check spaces and hat spaces are our Hardy spaces.

Theorem

Any our Hardy space defines a reflectionless Jacobi matrix
J(H2(α)) with spectrum E. If E is weakly homogeneous in the
sense of Poltoratski–Remling, then J(H2(α)) is purely absolutely
continuous.

Several slides contain the sketch of the proof.

Alexander Volberg Solving a problem of Kotani–Last



24. Duality formulae

Let êα be a normalized in L2 reproducing kernel of Ĥ2(α),

êα = k̂α/
√

k̂α(0); Let ěα be a normalized in L2 reproducing kernel

of Ȟ2(α), ěα = ǩα/
√

ǩα(0).

Theorem

1) ∆ěα−1ν = êα on T;

2)
√

k̂α(0) · ǩα−1ν(0) = ∆(0);

3) êα(0) · ěα−1ν(0) = ∆(0).

Proof: using slide 20 we can write

L2(α) = Ĥ2
0 (α)⊕∆Ȟ2(α−1ν) = Ĥ2

0 (α)⊕{∆ěα−1ν}⊕∆Ȟ2
0 (α−1ν)

and L2(α) = Ĥ2(α)⊕∆Ȟ2
0 (α−1ν) = Ĥ2

0 (α)⊕{êα}⊕∆Ȟ2
0 (α−1ν).

Comparison gives 1): ∆̄ěα
−1ν = êα on T. Multiply on êα and

integrate on T: 1 =
∫
|êα|2dm =

∫
ěα
−1ν ·êα

∆ dm
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25. Duality formulae

Repeating: 1 =
∫
|êα|2dm =

∫
ěα
−1ν ·êα

∆ dm. The RHS can be
written as

1 =
∫
T

(
êα− êα

−1ν∆

êα−1ν(0)∆(0)
êα(0)

)
· ěα
−1ν

∆ dm+C
∫
T êαν

−1
ěα
−1νdm =

0 + êα(0)

êα−1ν(0)∆(0)
êαν

−1
(0)ěα

−1ν(0) = êα(0) · ěα−1ν(0).

We got 0 in the first term because the big bracket expression is
∈ Ĥ2

0 (α) and ěα
−1ν ∈ Ȟ2(α−1ν), see slides 19, 20. Hence we

proved 3) of the previous theorem. But 2) is the same as 3).
Theorem is proved.
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26. Construction of J(H2(α))

Given our Hardy space H2(α) define H2(αµ−1) as

bH2(αµ−1) := H2
0 (α),

that is: by division. It is a well defined closed subspace of
Ĥ2(αµ−1), and superspace of Ȟ2(αµ−1) because division by b
preserves check and hat.
One need to check that thus defined H2(αµ−1) is also our Hardy
space.
One need to check that f0 ∈ H2

0 (αµ−1) implies zf0 ∈ H2(αµ−1).
By definition the latter means exactly zbf0 ∈ H2

0 (α). For that it is
enough to check that zbf0 ∈ H2(α) (notice double zero of bf0 at
0). But H2(α) was assumed to be our space. Therefore, of course
zbf0 ∈ H2(α) if bf0 ∈ H2

0 (α). But f0 ∈ H2
0 (αµ−1) ⊂ H2(αµ−1), so

bf0 ∈ H2
0 (α) by the definition of H2(αµ−1). We are done.
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27. Construction of J(H2(α))

We just proved

Theorem

If H2(α) is our Hardy space, then all Hardy spaces in the next
chain of equalities are also our Hardy spaces: 1)
H2(α) = {eα} ⊕ bH2(αµ−1) = {eα} ⊕ {beαµ

−1} ⊕ b2H2(αµ−2) =
{eα} ⊕ {beαµ

−1} ⊕ {b2eαµ
−2} ⊕ b3H2(αµ−3) = . . . , where eαµ

−n

is a normalized reproducing kernel of our Hardy space H2(αµ−n).
2) These vectors form the basis in H2(α). 3) eα is is orthogonal to

zbkeαµ
−k

for all k ≥ 2.

Now negative direction: call ek := bkeαµ
−k
, k ≥ 0.

eα(0) ≥ ěα(0) ≥ ∆(0) > 0. Hence ze0 has a simple pole at 0. By
3) of the Theorem above ze0 is orthogonal to b2H2(αµ−2). Hence

ze0 = p0e−1 + q0e0 + p1e1,

where e−1 is orthogonal to e0, e1, and thus to all ek , k ≥ 0, e−1

has a simple pole at zero.
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28. Construction of J(H2(α))

By definition
H2(αµ) := bH2(α)⊕ {be−1}.

Again one can prove that this is our Hardy space.

Theorem

e−1 = b−1eαµ, where eαµ is the normalized reproducing kernel of
H2(αµ) at 0.

Proof: it is enough to check that be−1 is proportional to kαµ. But
if f = c0be−1 + c1be0 + . . . then f (0) = c0(be−1)(0). But by
orthogonality 〈f , be−1〉 = c0. Therefore, kαµ = (be−1) · (be−1)(0).

Alexander Volberg Solving a problem of Kotani–Last



29. Construction of J(H2(α))

Starting now with our H2(αµ) we build our H2(αµ2) and
e−2 = b−2eαµ

2
, etc. Finally we get

Theorem

Starting with our H2(α) one builds the chain of our H2(αµk),

k ∈ Z, such that their normalized reproducing kernels eαµ
k

give us
the orthonormal basis eαk := b−keαµ

k
, k ∈ Z, and the operator of

multiplication on z (real function on T) in the space L(α) has a
three-diagonal Jacobi form in the basis {ek}k∈Z. Moreover,
zeαn = pn(α)eαn−1 + qn(α)eαn + pαn+1eαn+1, where pn(α) = P(αµ−n),

qn(α) = Q(αµ−n), and P(α) = (zb)(0)
√

kα(0)
kαµ(0) , Q(α) = . . . .

This matrix is reflectionless.

Proof: For the formula, take n = 1 and decompose
zeαn = pn(α)eαn−1 + qn(α)eαn + pαn+1eαn+1 near ζ = 0.
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30. Reflectionlessness of J(H2(α))

Skip index α. It is known that

r+(z) := 〈(J+ − z)−1e0, e0〉 = − 1

z − q0 − p2
1

z−q1−...

.

But from the previous slide

− e0

p0e−1
(ζ) = − 1

ζ − q0 − p2
1

ζ−q1−...

.

We get

r+(z(ζ)) = − e0

p0e−1
(ζ), ζ ∈ D (and ζ ∈ T a.e.) (2)

Exactly as for hat we have orthogonality and check: exactly so for
any our spaces H2

0 (α), H2(α) we get that their annihilators are

∆H̃2(α−1ν), ∆H̃2
0 (α−1ν) = ∆bH̃2(µ−1α−1ν).

And all space above are our Hardy spaces.
Alexander Volberg Solving a problem of Kotani–Last



30a. Reflectionlessness of J(H2(α))

Then we have the dual basis of normalized reproducing kernels
ẽn := bneµ

−nα−1ν . Exactly the same Duality formulae, slides 24, 25
will hold:

bẽn = ∆e−n−1 onT. (3)

We also get the inversion of matrix:

τJ(H2(α)) = J(H̃2(µ1α−1ν)), τpn = p−n, τqn = q−n−1 .

Therefore, denoting r−(z) = 〈(J− − z)−1e−1, e−1〉 we get

r−(z(ζ)) = − ẽ0

p0ẽ−1
(ζ), ζ ∈ T a.e. (4)

Hence, 1
r+(z(ζ)) = −p0e−1

e0
(ζ) = −p0ẽ0

ẽ−1
= p2

0r−(z(ζ)) a. e. ζ ∈ T. So

1
r+(x) = p2

0r−(x) a. e. dωΩ(x), which is mutually absolutely

continuous with Lebesgue measure dx |E for Widom domains.
Reflectionlessness is proved.
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31. Poltoratski–Remling condition: J(E ) = {J(H2(α))}.
Bijection.

Our E contains [0, 1] and small intervals accumulating to 0.
Automatically ∫

E

dx

|x | =∞.

Let J(E ) denote all reflectionless Jacobi matrices with spectrum E .
Here is the corollary of Poltoratski–Remling weak homogeneity
criterion.

Theorem

Let E be as above (countable sequence of intervals converging to 0
and integral above diverges). Then all J(E) are purely absolutely
continuous.

In particular this is our situation by a trivial reason that [0, 1] ⊂ E .
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32. J(E ) = {J(H2(α))}. Bijection.

Theorem

Let Ω = C \ E ,E ⊂ R, be a Widom domain. And let J be a
reflectionless matrix with the spectrum E . Then a) there exists a
unique factorization

r+ ◦ z = − 1

p0

e0

e−1
(5)

such that p0(e−1(ζ)e0(ζ)− e0(ζ)e−1(ζ)) =√
(z− a0)(z− b0)

∏
j≥1

√
(z−aj )(z−bj )

z−cj , for ζ ∈ T, where e0 and

be−1 are of Smirnov class with mutually simple singular parts and
e0(0) > 0. b) (e0)inn is Blaschke product, which is a divisor of
Πbxj , where xj ∈ (aj , bj) are poles of

1
R0,0

= 1
r+
− p2

0r−, R0,0 := 〈(J − z)−1e0, e0〉. c) e0 ∈ Ĥ2(α) for

some α ∈ Γ∗. d) If in addition J has purely a. c. spectrum , then
there exists our Hardy space H2(α) such that J = J(H2(α)).
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33. Inversion formula

Let e−1, e0 denote standard vectors in `2(Z). For an arbitrary
two-sided Jacobi matrix J span{e−1, e0} is a cyclic subspace. The
spectral 2× 2 matrix measure dσ is defined by

R(z) = E∗(J − z)−1E =

∫
dσ(x)

x − z
,

where E : C2 → `2, by E((a, b)) = ae−1 + be0. And by general
inversion formula

R(z) =

[
R−1,−1 R−1,0

R0,−1 R0,0

]
(z) =

[
r−1
− (z) p0

p0 r−1
+ (z)

]−1

. (6)

In particular,

− 1

R0,0(z)
= − 1

r+(z)
+ p2

0r−(z). (7)
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34. e0

If r+ is as in (5) and reflectionlessness holds, then

= 1

R0,0
= 2= 1

r+
=

p0(e−1(ζ)e0(ζ)− e0(ζ)e−1(ζ))

i |e0(ζ)|2 . (8)

But R0,0 is purely imaginary on E a. e. by (7) and
reflectionlessness. And it is real on R \ E . Also R0,0 is of positive
imaginary part in C+. Such function can be restored by its purely
imaginary values on E R0,0(z) = −1√

z−a0)(z−b0)
Π∞j=1

z−xj√
(z−aj )(z−bj )

=

−1√
z−a0)(z−b0)

Π∞j=1
z−xj
z−cj

z−cj√
(z−aj )(z−bj )

Put W (z) = Π∞j=1
z−xj
z−cj .

Comparing two formulae above and Wronski formula on slide 32
we get that |e0(ζ)|2 = W ◦ z. This defines uniquely the outer part
of e0. Furthermore, r+ is of positive imaginary part in C+, and all
its poles are in gaps (aj , bj), not more than one in each. Therefore
one can apply Sodin–Yuditskii theorem that says that such
functions in Widom Ω satisfy that r+ ◦ z has its inner part only the
ration of two Blaschke products. So (e0)inn is a Blaschke product
(over some poles of 1/R0,0.
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35. e0

Automatically e0 has the form

e0(ζ) = Πj≥1b
1+εj

2
xj

√
W ◦ z∆(ζ)

Πj≥1bxj (ζ)
= inner · outer .

Conversely, define e0 by this formula (xj are zeros of r+) and define
p0e−1(ζ) then by (5). Then Wronski formula of Theorem on slide
32 follows. In fact, it follows from (8) of the previous slide, i. e.
from reflectionless, and from the fact that e0 defined above
automatically satisfies |e0(ζ|2 = W ◦ z. Of course we use the
formula for R0,0 from the previous slide again.
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36. J(E ) ⊂ {J(H2(α))}. Sketch.

Let e−1, e0 denote standard vectors in `2(Z). For an arbitrary
two-sided Jacobi matrix J span{e−1, e0} is a cyclic subspace. The
spectral 2× 2 matrix measure dσ is defined by

R(z) = E∗(J − z)−1E =

∫
dσ(x)

x − z
,

where E : C2 → `2, by E((a, b)) = ae−1 + be0. Let us make the
correspondence of standard vectors in `2 to elements of L2(dσ):

en →
[
−p0Q+

n

P+
n

]
, e−n−1 →

[
P−n
−p0Q−n

]
,

where P±n and Q±n are orthogonal polynomials of the first and
second kind generated by J±. The operator J becomes the
operator multiplication by independent variable in L2(dσ).
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37. J(E ) ⊂ {J(H2(α))}. Sketch.

Theorem

Assume, in addition, that J ∈ J(E ) has absolutely continuous
spectrum. Then the map[

F (x)
G (x)

]
→ f (ζ) = e−1(ζ)F ◦ z + e0(ζ)G ◦ z,

[
F (x)
G (x)

]
∈ L2(dσ),

(9)
acts unitary from L2

dσ to L2(α), α = π(J). Moreover, the
composition map

F : `2 → L2(dσ)→ L2(α)

is such that H2
J := F(`2

+) possesses the properties

Ȟ2(α) ⊆ H2
J ⊆ Ĥ2(α), z(H2

J )0 ⊂ H2
J .

In other words, this J = J(H2(α)) with our Hardy space.
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38. J(E ) ⊂ {J(H2(α))}. Sketch.

Sketch: Looking at slide 32 and defining the dual functions ẽ0, ẽ−1

we consider

Ψ = −p0

[
ẽ0 0
0 e0

]
, Φ =

[
ẽ−1 −e0

−ẽ0 e−1

]
. (10)

And by general inversion formula[
R−1,−1 R−1,0

R0,−1 R0,0

]
(z) =

[
r−1
− (z) p0

p0 r−1
+ (z)

]−1

. (11)

In particular,

− 1

R0,0(z)
= − 1

r+(z)
+ p2

0r−(z). (12)

we get
R ◦ z = ΨΦ−1.
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39. J(E ) ⊂ {J(H2(α))}. Sketch.

Now if f (ζ) = e−1(ζ)F ◦ z + e0(ζ)G ◦ z,
[

F (x)
G (x)

]
∈ L2(dσ) then

[
f (ζ)

∆(ζ)f (ζ̄)/b(ζ)

]
=

[
e−1 e0

ẽ0 ẽ−1

] [
F
G

]
◦ z = Φ−1

[
F
G

]
◦ z · det Φ.

Therefore, we have

1

2
(

∫
T
|f (ζ)|2dm(ζ)+

∫
T
|f (ζ̄)|2dm(ζ)) =

∫
E

[
F
G

]∗
(x)σ′a.c(x)dx

[
F
G

]
(x),

because σa.c = (Φ−1)∗Φ−1 det Φ from σ′a.c = 1
2πi (R − R∗) and the

formula for R at the end of the previous slide. Then of course we
get That this map is an isometry from L2(dσ) onto L2(α) if sigma
is absolutely continuous.
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40. J(E ) ⊂ {J(H2(α))}. Sketch.

On the previous slide we used that detΦ(x)ω(x)dx = 1, where
harmonic measure density ω has the formula

ω(x) =
1√

(x − a0)(b0 − x)
Πj≥1

x − cj√
(x − aj)(x − bj)

and det Φ(x) = e−1ẽ−1 − e0ẽ0 = e−1e0 − e0e−1 = reciprocal see
slide 32, Wronski relationship, and use the fact that dual ẽ can be
defined by flipping the matrix and that they will satisfy duality

relation for reflectionless J: p0e−1

p0e0
= p0ẽ0

ẽ−1
.
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41. J(E ) ⊂ {J(H2(α))}. Sketch.

Let

en(ζ) = F(en) = −p0e−1(ζ)Q+
n (z) + e0(ζ)P+

n (z), n ≥ 0.

Since −Q+
n /P+

n is the Padé approximation for r+, this function has
zero of exact multiplicity n at the origin. Thus, it is of Smirnov
class, and therefore belongs to Ĥ2(α). It proves H2

J ⊆ H2(α) and
z(H2

J )0 ⊂ H2
J . The latter because of the definition of H2

J as the
span of {en(ζ)}n≥0 as above and because with this definition of
en(ζ) the Jacobi 3-terms relationship obviously holds (and with
coefficients coming from the initial matrix J of course).
To show that Ȟ2(α) ⊂ H2

J we pass to the dual representation for
the flipped matrices

∆(ζ)e−n−1(ζ̄)/b(ζ) = −p0ẽ−1(ζ)Q−n (z) + ẽ0(ζ)P−n (z), n ≥ 0.
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42. For Widom domain Ȟ2(α) = Ĥ2(α) for a. e. α

Theorem

Let Ω be a Widom domain. ∀β ∈ Γ∗ ∃w ∈ H∞(β) Blaschke
product such that ∀α ∈ Γ∗, wĤ2(α) ⊂ Ȟ2(αβ).

Proof: Consider linear functional Λ on ∆̄Ĥ1(β−1ν) given by

Λ(∆̄f ) = f (0)

and extend to L1(T). We get w0 ∈ L∞(T) such that∫
T

w0Ĥ1(β−1ν)

∆
dm = f (0).

So for w1 := ∆w̄0 we have

〈Ĥ1(β−1ν),w1〉 = f (0).
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43. For Widom domain Ȟ2(α) = Ĥ2(α) for a. e. α

Put w2 := Pβ−1νw1, then

〈Ĥ1(β−1ν),w1〉 = f (0).

Hence, 〈∆h0,w2〉 = 〈Pβ−1ν∆h0,w2〉 = 0 for all h0 ∈ H∞0 (as
(Pα∆h)(0) = ∆(0)h(0)). Therefore w3 := w̄2∆ ∈ H∞(β). And∫

T

w3f

∆
= f (0), ∀f ∈ Ĥ1(βν).

Test on f = ∆f1, f1 ∈ H∞(β−1). Then
w3(0)f1(0) =

∫
T

w3∆f1
∆ = f (0) = f1(0)∆(0). So

w3(0) = ∆(0).

So ∫
T

w3f

∆
=

w3(0)

∆(0)
f (0), ∀f ∈ Ĥ1(βν).

Consider finally w := w3/‖w3‖∞, then again∫
T

wf

∆
=

w(0)

∆(0)
f (0), ∀f ∈ Ĥ1(βν), w ∈ H∞(β), ‖w‖∞ = 1.
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44. For Widom domain Ȟ2(α) = Ĥ2(α) for a. e. α

‖w3‖∞ ≤ ‖w1‖∞ = ‖w0‖∞ − ‖Λ‖ ≤ 1. Therefore, the last
functional Λ/‖w3‖∞ has norm ≥ 1. Hence there exists
f ∈ Ĥ1(β−1ν), ‖f ‖1 = 1 such that

w(0)f (0)

∆(0)
=

∫
T

wf

∆
dm ≥ 1 (13)

Factorize f = h1H2, h1 ∈ Ĥ2(α0) for some α0 ∈ Γ∗,
h2 ∈ Ĥ2(α−1

0 β−1ν), ‖h1‖2 = ‖h2‖2 = 1. We can write these
functions as follows

h1 = h1(0)
k̂α0√
k̂α0(0)

+ H1, H1 ∈ Ĥ2
0 (α0)

h2 = h1(0)
k̂α
−1
0 β−1ν√

k̂α
−1
0 β−1ν(0)

+ H2, H2 ∈ Ĥ2
0 (α−1

0 β−1ν)

Alexander Volberg Solving a problem of Kotani–Last



45. wĤ2(α) ⊂ Ȟ2(αβ)

On fact, it is very easy to see the following result:

Theorem

Function w ∈ H∞(β) satisfies∫
T

wf

∆
=

w(0)

∆(0)
f (0), ∀f ∈ Ĥ1(βν) (14)

iff wĤ2(α) ⊂ Ȟ2(αβ).

In fact, given (14) we have∫
T

wh1 · h2

∆
dm = 0

for all h1 ∈ Ĥ2(α), h2 ∈ Ĥ2
0 (α−1β−1ν). By definition of check

spaces on slide 19 this means that wĤ2(α) ⊂ Ȟ2(αβ).
Conversely, if wĤ2(α) ⊂ Ȟ2(αβ), we just factorize f ∈ Ĥ1

0 (βν) to
get (14) for ∀f ∈ Ĥ1

0 (βν). Then f ∈ Ĥ1(βν) is done, see slide 14.
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46. For Widom domain Ȟ2(α) = Ĥ2(α) for a. e. α

Therefore,

1 =
( |h1(0)|2

k̂α0(0)
+ ‖H1‖2

2

)( |h2(0)|2

k̂α
−1
0 β−1ν(0)

+ ‖H2‖2
2

)
.

Taking into account (13) from slide 44, we get

|h1(0)|√
k̂α0(0)

|h2(0)|√
k̂α
−1
0 β−1ν(0)

≤ 1 ≤ w(0)h1(0)h2(0)

∆(0)

And we obtained

w(0) ≥ ∆(0)√
k̂α0(0)k̂α

−1
0 β−1ν(0)

=
ěα0β(0)

êα0(0)
. (15)

We used here duality formula fro slide 25.

Theorem

w(0) = infα∈Γ∗
ěαβ(0)
êα(0) .
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47. For Widom domain Ȟ2(α) = Ĥ2(α) for a. e. α

Proof: we need now only

w(0) ≤ ěαβ(0)

êα(0)
. (16)

Proof: we come back to relationship (14) on slide 45:

w(0)

∆(0)
f (0) =

∫
T

wf

∆
, ∀f ∈ Ĥ1(βν), w ∈ H∞(β), ‖w‖∞ = 1.

Take an arbitrary α ∈ Γ∗ and test this relationship on

f = êα · êα−1β−1ν .

Then w(0)êα(0)·êα−1β−1ν(0)
∆(0) ≤

∫
|w | |f |dm ≤ 1. This means that

w(0) ≤ ∆(0)

êα(0) · êα−1β−1ν(0)
=

ěαβ(0)

êα(0)
.

In the last equality we again used duality formula from slide 24. So
(16) is done.
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48. For Widom domain Ȟ2(α) = Ĥ2(α) for a. e. α

Lemma

w as in (14) of slide 45 or (the same) as i Theorem 20 is a
Blaschke product.

Proof: it will be easy to prove that w is an inner function. Lower
semi-continuity of the RHS in Theorem 20, slide 46, mean that inf
is min, and let α0 be where it is attained.
0 ≤ ‖wêα0 − ěα0β‖2

2 + ‖(1− |w |2)1/2êα0‖2
2 = 2− 2〈wêα0 , ěα0β〉 =

2

(
1− w(0) êα0 (0)

ěα0β(0)

)
= 0 the penultimate equality is because

ěα0β = ǩα0β

ěα0β(0)
.

Therefore, |w | = 1 a. e. on T, so w is inner.
To prove that it is a Blaschke product is more complicated.
Fortunately all is ready for that. We just saw

w =
ěα0β

êα0
=

(ěα0β)inn
(êα0)inn

. (17)
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49. For Widom domain Ȟ2(α) = Ĥ2(α) for a. e. α

So winn divides (ěα0β)inn. Choose J = J(Ȟ2(α0β)). We use r+ for
this operator. Function e0 below exactly coincides with ěα0β. We
combine a Theorem of Sodin–Yuditskii and formula (2) from slide
30: r+ ◦ z = − e0

p0e−1
. We already mentioned and used the following

Sodin–Yuditskii’s theorem:

Theorem

Let Ω be a Widom domain. Let F be meromorphic in Ω, analytic
and with positive imaginary part in C+ and let its poles satisfy the
Blaschke condition in Ω. Then F ◦ z is of bounded characteristic,
and Finn is the ratio of two Blaschke products.

Function r+ is exactly like this, all its poles are in gaps of E = ∂Ω,
at most one in each gap of E = ∂Ω, so Blaschke condition on
poles is obvious from the fact that our Ω is a Widom domain.
Obviously we conclude that (ěα0β)inn = (e0)inn divides the
Blaschke product in the numerator of (r+)inn, so it is a Blaschke
product itself.
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50. For Widom domain Ȟ2(α) = Ĥ2(α) for a. e. α

Now we are ready to prove that Widomness of Ω implies

Ĥ2(α) = Ȟ2(α), for dαa.e.α.

Take β = id ∈ Γ∗ and choose function w as before:
wĤ2(α) ⊂ Ȟ2(α). In Widom domain we proved it is necessarily a
Blaschke product: w = Πj≥1bxj . We denote by γ−1

j Γ∗ the
character of byj . Then

βn := γ1 . . . γn → id in Γ∗.

We know by1w1Ĥ2(α) ⊂ Ȟ2(α), so by1w1Ĥ2(α) ⊂ Ȟ2
y1

(α).
Now use divisibility theorem (for y1 not for 0) from slide 21:
w1Ĥ2(α) ⊂ b̌y1H2(αγ1). Hence,

w1Ĥ2(α) ⊂ Ȟ2(αγ1), . . . ,wnĤ2(α) ⊂ Ȟ2(αγ1 . . . γn) = Ȟ2(αβn).

Theorems on slides 45, 46 imply then that ∀α wn(0) ≤ ěαβn (0)
êα(0) .
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51. Finishing the proof that Ȟ2(α) = Ĥ2(α) for a. e. α for
Widom domain

Again ∀α wn(0) ≤ ěαβn (0)
êα(0) . So

1 ≥
∫

Γ∗

ěα(0)

êα(0)
dα =

∫
Γ∗

ěαβn(0)

êαβn(0)
dα =

∫
Γ∗

ěαβn(0)

êα(0)

êα(0)

êαβn(0)
dα ≥

≥ wn(0)

∫
Γ∗

êα(0)

êαβn(0)
dα

1 ≥ lim inf
n→∞

wn(0)

∫
Γ∗

êα(0)

êαβn(0)
dα = lim

n→∞
wn(0) lim inf

n→∞

∫
Γ∗

êα(0)

êαβn(0)
dα.

limn→∞ wn(0) = 1 because w is a Blaschke product
w = by1 . . . bynwn. By Fatou’s lemma and upper-continuity of hats

lim infn
∫

Γ∗
êα(0)

êαβn (0)
dα ≥

∫
Γ∗ lim infn

êα(0)
êαβn (0)

dα = êα(0)
êα(0) dα = 1.

Therefore,
ěα(0) = êα(0) a.e.

So Ȟ2(α) = Ĥ2(α) a. e.
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52. There exists J ∈ J(E ), which is not almost periodic

Let Θ ⊂ Γ∗ of irregular points α, that is α: Ȟ2(α) 6= Ĥ2(α).
We know that Θ 6= ∅ and the set of regular points is not empty an
set, R := Γ \Θ 6= ∅ for Widom domains without DCT.
Fix α ∈ Θ. Denote J̌ := J(Ȟ2(α)), Ĵ := J(Ĥ2(α)). Fix any β ∈ R
and find subsequence [|mn} such that

αµ−mn → β in Γ∗.

We have π : J(E )→ Γ∗ (Abel map) because every J ∈ J(E ) is
J(H2(α). On the other hand, it is a continuous map as in classical
theories. Clearly

π(Smn J̌S−mn) = π(Smn ĴS−mn) = αµ−mn → β.

Passing to subsequence twice we WLOG think that these
sequences weakly converge to some reflectionless J1, J2. We saw
that J1 = J(H2(β)), J2(H2(β)). But there is only one our space
H2(β) as β ∈ R. So J1 = J2 =: J0.
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53. Almost all J ∈ J(E ) are not almost periodic

Now if both J̌ and Ĵ were almost periodic, then passing to
subsequence of {mn} (but keeping the notation), we would get
Then ‖Smn J̌S−mn − J0‖ → 0, ‖Smn ĴS−mn − J0‖ → 0.

0 < ‖J̌ − Ĵ‖ = ‖Smn J̌S−mn − ‖Smn ĴS−mn‖ → 0.

Contradiction. So we have a non-almost periodic element from
J(E ). With purely abs. continuous spectrum (all of them are like
that).
Consider any invariant ergodic probability measure σ on J(E ).
Push it forward by π. Measure π∗σ is then µ-invariant. But
µ(γj) = e2ıiωj . In generic position of E these ωj are rationally
independent. So we have only unique µ-invariant ergodic measure.
So

dα = Haar measure = π∗σ.

So σ(π−1Θ) = 0.
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54. Almost all J ∈ J(E ) are not almost periodic

Let J0 be a non a. p. matrix. Take a sequence of open
neighborhoods {Vn} of J0, ∩nVn = {J0}.
Theorem

Let Ω− C \ E ,E ⊂ R, be a Widom domain such that all Jacobi
matrices from J(E ) are purely absolutely continuous. Then for any
open set V in J(E ) (open in the weak topology), one has σ(V ) > 0.

Consider TJ := SJS−1, and Σn := ∪mT−mVn. By ergodicity of σ
and by Theorem above, σ(Σn) = 1∀n. Put Σ := ∩nΣn. Then
σ(Σ) = 1. Also ∀J ∈ Σ there is a subsequence {mn} such that
TmnJ → J0 weakly. If J were a. p. then a subsequence of mn

(keep the same notation) would give ‖TmnJ − J0‖ → 0. But then
for the norm-topology orbits we have

orbJ0
‖·‖ ⊂ orbJ

‖·‖

A. p. of J then would imply a. p. of J0. But J0 is not a. p. So Σ,
σ(Σ) = 1, all consists of non a. p. matrices.
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55. All J ∈ J(E ) are not almost periodic

As we already proved (the end of slide 53) that

σ(π−1R) = 1

and that
σ(non a. p.) = 1,

we can find J̃ such that it is non a. p. and such that
π(J̃) = β̃ ∈ R = Γ∗ \Θ. Suppose that J ∈ J(E ) is a. p. Let
π(J) = γ. Find subsequence {mn} such that

γµ−mn → β̃.

Then take a weakly converging subsequence (keep the name) such
that TmnJ weakly converges to some (of course reflectionless)
matrix. As β̃ is regular, then there is only one our space H2(β̃) ⇒
Tmn → J̃. Passing to subsequence once more and using that J is

a. p. we get that ‖TmnJ − J̃‖ → 0. But then orbJ̃
‖·‖
⊂ orbJ

‖·‖

Almost periodicity of J then would imply a. p. of J̃. This
contradicts the choice of J̃. We are done.
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56. Picture of the Abel map π : J(E )rightarrowΓ∗

Γ∗(C \ E)

π

J(E)
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