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@ A class of soliton equations with hodograph (reciprocal)
transformation and motivation of our research

@ Integrable semi-discrete analogues of the short pulse and coupled
short pulse equations and its their self-adaptive moving mesh method

@ Self-adaptive moving mesh method for the generalized Sine-Gordon
equation

@ Summary and further topics
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Integrability of nonlinear wave equations

e Existence of Lax pair (Lax integrability)
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Integrability of nonlinear wave equations

Existence of Lax pair (Lax integrability)
Existence of infinity numbers of symmetries (conservation laws)
Existence of N-soliton solution
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Integrability of nonlinear wave equations

Existence of Lax pair (Lax integrability)

Existence of infinity numbers of symmetries (conservation laws)
Existence of N-soliton solution

Pass the Painlevé Test (Painlevé integrability)

Ask Hirota-sensei
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Why integrable discretization?

@ Nijhoff: The study of integrability of discrete systems forms at the
present time the most promising route towards a general theory of
difference equations and discrete systems.

@ Hietarinta: Continuum integrability is well established and all easy
things have already been done; discrete integrability, on the other
hand, is relatively new and in that domain there are still new things to
be discovered.
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A class of integrable soliton equations share the following common
features

@ They are related to some well-known integrable systems through
hodograph (reciprocal) transformation

@ They admit bizarre solutions such as peakon, cuspon, loop or breather
solutions.
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A class of integrable soliton equations share the following common
features

@ They are related to some well-known integrable systems through
hodograph (reciprocal) transformation

@ They admit bizarre solutions such as peakon, cuspon, loop or breather
solutions.

Motivation of our research project

@ Obtain integrable discrete analogues for this class of soliton equations
@ Novel integrable numerical schemes for these soliton equations
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The Camassa-Holm equation and its short wave model

The Camassa-Holm equation
2
Ut + 2K Uz — Utze + 3UUL = 2UzgUgy + UUgza

R. Camassa, D.D. Holm, Phys. Rev. Lett. 71 (1993) 1661
Inverse scattering transform, A. Constantin, (2001)
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The Camassa-Holm equation and its short wave model

The Camassa-Holm equation
2
Ut + 2K Uz — Utze + 3UUL = 2UzgUgy + UUgza

R. Camassa, D.D. Holm, Phys. Rev. Lett. 71 (1993) 1661
Inverse scattering transform, A. Constantin, (2001)

Short wave limit: ¢ — et,x — /€, u — €2u

The Hunter-Saxton equation

2
Utpr — 2K Uz + 2UgpUgpy + UlUgye = 0

Hunter, & Saxton (1991): Nonlinear orientation waves in liquid crystals
Hunter & Zheng (1994): Lax pair, bi-Hamiltonian structure
FMO (2010): Integrable semi- and fully discretizations
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The Degasperis-Procesi equation and its short wave model

The Degasperis-Procesi equation
u + 3"33um — Utge + AUU; = BUgUzy + UUgzs »

A. Degasperis, M. Procesi, (1999)
Degasperis, Holm, Hone (2002)
N-soliton solution, Matsuno (2005)
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The Degasperis-Procesi equation and its short wave model

The Degasperis-Procesi equation
u + 3"33uw — Utge + AUU; = BUgUzy + UUgzs »

A. Degasperis, M. Procesi, (1999)
Degasperis, Holm, Hone (2002)
N-soliton solution, Matsuno (2005)
Short wave limit:

3
Utgr — 3K Uz + 3UzUgy + UUgge = 0

0z (0¢ + udy)u = 3x3u

@ Reduced Ostrovsky equation, L.A. Ostrovsky, Okeanologia 18, 181
(1978).
e Vakhnenko equation, V. Vakhnenko, JMP, 40, 2011 (1999)
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Short pulse equation

1
Ugpt = U + E(u3)a:a:

1,
Oy Bt—iu Oz lu=1u

o Schafer & Wayne(2004): Derived from Maxwell equation on the
setting of ultra-short optical pulse in silica optical fibers.

@ Sakovich & Sakovich (2005): A Lax pair of WKI type, linked to
sine-Gordon equation through hodograph transformation;

@ Brunelli (2006) Bi-Hamiltonian structure, Phys. Lett. A 353, 475478

e Matsuno (2007): Multisoliton solutions through Hirota's bilinear
method

e FMO (2010): Integrable semi- and fully discretizations.

B.Feng (UT-Pan American) Integrable numerical method October 26, 2013 8 /30



Coupled short pulse equation |

The coupled short pulse equations

{ Ugpr = U + (%uvuw)m

Vet = UV + (%uvvw)m

e Dimakis and Miiller-Hoissen (2010), Derived from a bidifferential
approach to the AKNS hierarchies.

e Matsuno (2011): Re-derivation, as well as its multi-soliton solution
through Hirota's bilinear approach.

@ Brunelli and Sakovich (2012) Bi-Hamiltonian structure
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Coupled short pulse equation |l

Ugpr = U + uu?c + %(u2 + v Uy
Vgt = U + vvaz3 + %(u2 + %) vgy
Oy (0 — % (u? 4+ v?) 8z) u = u — UZVV,
% (u2 + vz) Bw) V=V — VpUlUy
o B.F: J. Phys. A 45, 085202 (2012).

@ Brunelli & Sakovich: Hamiltonian Integrability, arXiv:1210.5265,
(2012).
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The generalized sine-Gordon equation

The generalized sine-Gordon equation

Ut = (1 +v8?) sinu

02 (0¢ — vcosudy)u = sinu.

@ Proposed by A. Fokas through a bi-Hamiltonian method (1995)

@ Matsuno gave a variety of soliton solutions such as kink, loop and breather
solutions (2011)

@ Under the short wave limit @ = u/e, & = (z — t) /€, t = €t, it converges
to the short pulse equation.

@ Under the long wave limit @ = u, T = ex, t = t/¢, it converges to the
sine-Gordon equation.
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Integrable discretization and integrable numerical scheme

Equation | Integrable discretization | Self-adaptive moving mesh method
CH eq. Yes Yes
HS eq. Yes Numerical difficulty?
DP eq. Yes Under Construction
VE eq. Yes Yes
SP eq. Yes Yes
CSPI eq. Yes Yes
CSPII eq. Yes Yes
GsG eq. Yes Yes
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Bilinear equations of the short pulse equation

Theorem (Matsuno 2007)
The short pulse equation

3
Ugt = U —“\U" )z
¢ =u+ o (u)

can be derived from bilinear equations

(%DsDy_l)j:‘.t=_sza
(%DsDy_l)f‘f:—f2,

through the hodograph transformation

x(y,s):y—Z(lnff)s, t(yas)ZS

and the dependent variable transformation

u(y, s) = 2i <1n 7, S)> .

f(y,s)

v
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Integrable semi-discrete short pulse equation

Theorem (FMO 2010, FIKMO2011)

The semi-discrete short pulse equation

d%(“k+1 —ug) = %($k+1 — xp) (Urg1 + uk) ,
d
@(wlﬂ—l — ) = _%(ui—i—l - ulzc) ’

is derived from bilinear equations:

(IDs — 1) fry1 - fo = — Frt1Frs
(D5 — 1) fry1 - fo = — frt1Fr-

through discrete hodograph transformation and dependent variable

transformation
A Tx
up = 2i 111}7 , xk = 2ka — 2(log frgk)s, Ok = Thky1 — Tk -
k
S

4
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Bilinear equations of the coupled short pulse equation

Theorem (Matsuno 2011)

The coupled short pulse equation

Vgt = U + % (uvvg),, -

{ Ugpr = U + % (uvug), ,

can be derived from bilinear equations

DsDy.f'gi=fgia i:1,2
Dﬁf-f= %glgza

through the hodograph and dependent variable transformations

91(y,3) v(y,s) = 92(y,8)

2(y:5) =y = 2(n ), ty,s) = 5, uly, 5) = 4L, i
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Integrable semi-discrete coupled short pulse equation

Theorem (FM02013)

The semi-discrete coupled short pulse equation

d%(ukJrl —uy) = %(ﬂik+1 — xp) (Urt1 + ur) ,
d%(vk+1 — i) = %(ivk-l-l — xk) (V41 + Vi) ,
d%(wk+1 — C'Jk) = —%(Uk+1vk+1 - ukvk) )

is derived from bilinear equations:

1D(g) ) - fr— 9 - ferr) = 9 e + 9 frgrs i=1,2
1 2
D2fy, - fr = 1gMg?

through discrete hodograph transformation and dependent variable
)

)
transformations x3, = 2ka — 2(In fi)s, ug = gfkk—, v = %Ek—.
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Pfaffian solution to semi-discrete coupled short pulse equation

Theorem
The semi-discrete coupled short pulse equation has the following pfaffian solution

.fk = Pf(ala"'3a'2N’b1""7bNacl""7CN)k:’
g’E:l) = Pf(do’ﬁiaal""aazNabla"',bNacla""CN)ka
where
Pi — Pj
(aiya;)k = Z 901(-0)("?)905'0)("3) y (@iy b))k = 035, (@iy )k = i j4N s

Pi + pj
1 (pipn+4)?

4p; — Pl
(bi, B1) = (¢i,B82) =1, (do,d*) =1, (d_1,d*)=—a.

n n 1+ ap; ke 1
905 )(k) =Dp; () et, & =—s+¢&o-
1—ap; g

(dns @), = 5™ (k) 5 (aiy d¥)e = o™ (k+ 1), (bis cj) =

v
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Integrable self-adaptive moving mesh method

We apply the semi-implicit Euler scheme to the semi-discrete short pulse
equation
A (upg1 — ug) = 20k (U1 + uk) 5
(@ —ar) = —5(uiyy —ud),
as follows
PRt = PR+ 307 (upy, + up)At,
{ st =op — & ((ih? - pt?) a,

n __ ,,n n oSN _ .n _ an
where pii = uy, , —up, 0 = xp,, — xy.
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Integrable self-adaptive moving mesh method

We apply the semi-implicit Euler scheme to the semi-discrete short pulse
equation
A (upg1 — ug) = 20k (U1 + uk) 5
(@ —ar) = —5(uiyy —ud),
as follows
PRt = PR+ 307 (upy, + up)At,
{ 5t = op — & () - (a2 A,
where pii = uy, , —up, 0 = xp,, — xy.
@ The quantity > dx, which corresponds to one of the conserved
quantities in the short pulse equaion is conserved.
@ Although the semi-implicit Euler is a first-order integrator, it is
symplectic. In other words, this scheme is symplectic for another
quantity, the Hamiltonian, of the short pulse equation.

@ The mesh is evolutive and self-adaptive, so we name it self-adaptive
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Integrable self-adaptive moving mesh method

Coupled short pulse equation

Upt = U + % (uvug),, ,
v+ % (uvvy),, -

Vgt
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Integrable self-adaptive moving mesh method

Coupled short pulse equation

Upt = U + % (uvug),, ,
Vgt = U + % (uvvy),, -
Integrable semi-discrete analogue
A (upg1 — uk) = 36k (Ukt1 + uk)
A (vpg1 — vk) = 206(Vkg1 + Vi),
d%(mqul - in) = —%(Uk—i—lvk—}-l - ’ukvk) )
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Integrable self-adaptive moving mesh method

Coupled short pulse equation

Upt = U + % (uvug),, ,
Vgt = U + % (uvvy),, -

Integrable semi-discrete analogue

A (upg1 — uk) = 36k (Ukt1 + uk)
A (vpg1 — vk) = 206(Vkg1 + Vi),
1
%(mk—{—l - in) = —§(Uk+1vk+1 - Ukvk) )
Self-adaptive moving mesh scheme
1 1
i =P+ 30%(upyy +up)At,
1 1
4" = a + 507 (v + R AL,
n+1 __ 1 n+1l n+1 n+1l n+1
0, =0 — 5 Up 1V — Uy U >At.

where px = Ug41 — Uk, gk = Vk+41 — Vk.
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Numerical solution to one-loop solution

5 : 5 . . . . . . .
(a) (b)
4 q 4+
3 3
Z2 22
S =
1 1
0 0
-1 -1
a0 30 20 -10 0 10 20 30 40 ~40 30 20 -10 0 10 20 30 40
X X

Figure : One-loop solution to the SP equation for p; = 1.0; (a) t=0; (b) t=10.0.
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Two-loop interaction

(a) (b)
4 4
3] 3]
22 EP
£ %

1] 1
0| 0|
-1 -1

-40 -30 -20 -10 0 10 20 30 40 -40 -30 -20 -10 0 10 20 30 40

X X
(c) (d)
4 4]
3| 3]
Z2 Z2
Z Z

1 1
0|
-1 -1

-40 -30 -20 -10 0 10 20 30 40 -40 =30 -20 -10 0 10 20 30 40

x x

Figure : Two loop interaction;(a) t=0; (b) t=6.0; (c) t=8; (d) t=12.
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One breather solution

(a) (b)
1.5] 1.5]
1] 1]
0.5 0.5
Y 2
Z g
-0.5| -0.5|
-1 -1
-1.5| -1.5|
-40 =30 -20 -10 0 10 20 30 40 -40 =30 =20 -10 0 10 20 30 40
x x
(c) (d)
1.5] 1.5]
1 1
0.5 0.5
E; Z
5 5
-0.5| -0.5|
-1 -1
-1.5| -1.5|
-40 -30 -20 -10 0 10 20 30 40 a0 =30 -20 -10 0 10 20 30 40
x x

Figure : One breather solution; (a) t=0; (b) t=10.0; (c) t=20; (d).t=30.
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Loop-breather Interaction

(a) . (b)
2.5
25|
2]
2
15 15
! E
E E
o5 05|
0
-05
-05 4
-1 -1.
60 40 20 0 20 40 60 40 20 0 20 40
x x
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2
2
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Z 1 Z o
E E
05|
-05
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-05 s
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X X

Figure : Loop-breather interaction; (a) t=0; (b) t=16; (c) t=28; (d) t=40.
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Numerical solution for one-loop solution of coupled short pulse

equation

t=2.00 t=2.00
0.8
1.5
(a) 0 (b)
1 =
Z o4
0.5 02
0 0
05§ -0.2
05 %0 10 0 10 20 -20 -10 2 10 20

Figure : One-loop solution to the CSP equation (a) x —wu att = 2; (b) x — v
att = 2.0.
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Numerical solution for two-loop solution of coupled short pulse

equation

4 . t=10.00
3
(a) : (b)

>2 52
S 35

1 1

0 0

-40 -20 0 20 40 -40 -20 0 20 40
X X

Figure : Two-loop solution to the CSP equation; (a) t=0; (b) t=10.0.
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A semi-discrete system obtained from generalized sine-Gordon

equation

The generalized sine-Gordon equation
Uty = (1 4+ uaz) sinu

0z (0y —vcosudy)u = sinu.

A semi-discrete system

%(uk_ﬂ — ug) %6k(sin Ug41 + sinuyg) ,
%(wk_ﬂ — x) = —v(cos ug41 — cos ug) ,
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Numerical solution for generalized sine-Gordon equation

t=10.00

7 7 -

6 1 6t

. (a) 5

4 a4t
Zs 23

s E

2 ol

1 e

0 0

1 . . . . . . . 1 . . . . . . .
-a0 -3 20  -10 0 10 20 30 40 40 -30 -20 -10 0 10 20 30 40

X X

Figure : Regular kink solution to the generalized sine-Gordon equation(a) t = 0;
(b) t = 10.0.
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Numerical solution for generalized sine-Gordon equation

t=10.00

uxt)
w

- L L L L -1 L L L L L
—]30 -20 -10 0 10 20 30 -30 -20 -10 0 10 20 30

Figure : Irregular kink solution to the generalized sine-Gordon equation(a) t = 0;
(b) t = 10.0.
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Summary and further topics

@ A novel numerical method: integrable self-adaptive moving mesh method, is
born from integrable discretizations of a class of soliton equations with
hodograph transformation
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Summary and further topics

@ A novel numerical method: integrable self-adaptive moving mesh method, is
born from integrable discretizations of a class of soliton equations with
hodograph transformation

@ A self-adaptive moving mesh method is not necessarily to be integrable

@ Further topic 1: High order symplectic numerical method for the
implementation of the self-adaptive moving mesh method

@ Further topic 2: self-adaptive moving mesh method for soliton equations
without hodograph transformation and non-integrable wave equations
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