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Broader Impacts of the problem of cyclicity

Invariant subspace problem and cyclic vectors:
Does every bounded operator T on a Hilbert space H have a
non-trivial closed invariant subspace (i.e. T (W ) ⊂W )?
NO, IF one can find an operator T such that every 0 6= ϕ ∈ H is

cyclic (i.e. H = clos span{Tnϕ : n ∈ N}).

Structure (basic building blocks) of a function space
determined by its cyclic vectors

Brown–Shields conjecture

For physicists, the cyclicity of an operator means that the
spectrum has multiplicity one



One complex variable



Dirichlet-type spaces and cyclic vectors

Consider the Dirichlet-type spaces Dα, i.e. bounded analytic
functions on the unit disk D ⊂ C with norm
‖f‖2Dα =

∑∞
k=0(k + 1)α|ak|2 <∞, where f(z) =

∑∞
k=0 akz

k

Bergman A2 = D−1; Hardy H2 = D0; and Dirichlet D = D1

A vector f is cyclic (under the forward shift) for Dα if

Dα = span{zkf(z) : k ∈ N ∪ {0}}

The constant function 1 is cyclic for Dα
f ∈ Dα cyclic, implies f(z) 6= 0 for z ∈ D

“The fewer zeros the easier is cyclicity.”



Optimality

Note f is cyclic in Dα iff

Nn(f, α) := inf
pn
‖pnf − 1‖2Dα → 0 as n→∞

If f(z) = 1− z, then pn = (order n Taylor poly. of 1/f) yields

‖pnf − 1‖2Dα = n+ 2

Two types of results:

Optimal sequence of polynomials pn

The optimal rate of decay of these norms Nn(f, α) as n→∞



Example of explicit optimal approximants

For f(z) = 1− z, optimal for

H2 : Cn(z) =

n∑
k=0

(
1− k

n+ 1

)
zk,

D : Rn(z) =

n∑
k=0

(
1− Hk+1

Hn+2

)
zk, Hn =

n∑
k=2

1

k
,

A2 : Sn(z) =

n∑
k=0

(
1− k(k + 3)

(n+ 1)(n+ 4)

)
zk.



Rate of decay
Let Hn =

∑n
k=2

1
k and note that Hn ≈ log n for large n.

Definition

For α < 1, we set ϕα(n) = nα−1, n ∈ N.
For α = 1, we use ϕ1(n) = 1/Hn, n ∈ N.

Theorem (Bénéteau–Condori–L.–Seco–Sola, J. d’A. accepted)

Suppose f ∈ Dα, α ≤ 1, can be extended analytically to some
strictly bigger disk. Suppose also that f does not vanish in D.
Then there exists a constant C0 so that the optimal norm satisfies

Nn(f, α) ≤ C0ϕα(n+ 1).

Moreover, for polynomial f with zero on T, and α = 1, 0,−1,
there is a constant C1 so that

C1ϕα(n+ 1) ≤ Nn(f, α).

Polynomials that have no zeros in D are cyclic in Dα for α ≤ 1.



Partial result on the Brown–Shields conjecture



Outer

Vectors in H2 are cyclic iff they are outer

For α ≥ 0: If f cyclic in Dα, then f outer

Logarithmic capacity

Non-tangentially f∗(ζ) = limz→ζ∈T f(z)

For f ∈ D, f∗ exists outside a set of logarithmic capacity zero

Zero set Z(f) = {ζ ∈ T : f∗(ζ) = 0}
Brown–Shields: If f ∈ D is cyclic, then Z(f) has capacity zero

Brown–Shields Conjecture (1984)

A vector f ∈ D is cyclic iff it is outer and has Z(f) capacity zero.

Brown–Cohn: For any closed set of logarithmic capacity zero
E ⊂ T, there exists a cyclic function f in D with Z(f) = E.



Two weak versions of the Brown–Shields conjecture:

Theorem (Hedenmalm–Shields 1990, Richter–Sundberg 1994)

A vector f ∈ D is cyclic, if it is outer and Z(f) is countable.

Theorem (El-Fallah–Kellay–Ransford 2006)

The condition ‘countable’ can be replaced by one which is closer to
‘capacity zero’, but VERY complicated.



Theorem (Bénéteau–Condori–L.–Seco–Sola, J. d’A. accepted)

Suppose f ∈ D and log f ∈ D. Then f is cyclic in D.

Theorem (Bénéteau–Condori–L.–Seco–Sola, J. d’A. accepted)

Let f ∈ H∞ and q = log f ∈ Dα, α ≤ 1. Suppose there exist
polynomials qn of degree ≤ n that approach q in Dα norm with

sup
z∈D

Re(q(z)− qn(z)) + log ‖qn − q‖ ≤ C

for some constant C > 0. Then f is cyclic in Dα.

Brown–Cohn’s examples satisfy above assumptions.



Two complex variables



Dirichlet-type space on the bidisk

Bidisk D2 = {(z1, z2) ∈ C2 : |z1| < 1, |z2| < 1}
Holomorphic f : D2 → C belongs to the Dirichlet-type space
Dα if its power series f(z1, z2) =

∑∞
k=0

∑∞
l=0 ak,lz

k
1z

l
2 satisfies

‖f‖2α =

∞∑
k=0

∞∑
l=0

(k + 1)α(l + 1)α|ak,l|2 <∞

Function f ∈ Dα is cyclic, if

Dα := span{zk1zl2f : k = 0, 1, . . . ; l = 0, 1, . . .}

Let Pn, n ∈ N, be the polynomials of the form

pn =

n∑
k=0

n∑
l=0

ck,lz
k
1z

l
2

f is cyclic iff Nn(f, α) := infpn∈Pn ‖pnf − 1‖2Dα
n→∞→ 0



Reductions to functions of one variable



Reduction to functions of one variable

Consider

Jα,M,N :=

{
f ∈ Dα : f =

∞∑
k=0

akz
Mk
1 zNk2

}
,

e.g. f(z1, z2) = 1− z1z2 ∈ Jα,1,1
Consider the mappings

LM,N : D2α → Dα via LM,N (F )(z1, z2) = F (zM1 · zN2 ),

RM,N : Jα,M,N → D2α via RM,N (f)(z) = f(z1/M , 1)

If f ∈ Jα,M,N , there exist constants such that

c2‖R(f)‖D2α ≤ ‖f‖α ≤ c1‖R(f)‖D2α

Note the change from Dα for bidisk to D2α for disk!



Theorem (Bénéteau–Condori–L.–Seco–Sola, submitted 2013)

Let f ∈ Jα,M,N have the property that R(f) = f(z1/M , 1) is a
function that admits an analytic continuation to the closed unit
disk, whose zeros lie in C \ D.
Then f is cyclic in Dα, and there exists a constant
C = C(α, f,M,N) such that

Nn(f, α) ≤ Cϕ2α(n+ 1).

This result is sharp in the sense that, if R(f) has at least one zero
on T, then there exists c = c(α, f,M,N) such that for large n:

cϕ2α(n+ 1) ≤ Nn(f, α).

Here ϕ2α(n) =

{
n2α−1 for 2α < 1
1/
∑n

k=2
1
k for 2α = 1

}
increases if α > 1/2.



Examples

Functions like f(z1, z2) = 1− z1, f(z1, z2) = (1− z1z2)N ,
N ∈ N, and f(z1, z2) = z21z

2
2 − 2(cos θ)z1z2 + 1, θ ∈ R,

satisfy the assumptions of the theorem

Polynomial g(z1, z2) = 1− z1z2 is not cyclic in Dα for
α > 1/2, although it is only zero for z1 = z2 = 1

Notice that g is outer, but its zero set {z1 = z2 = 1} has
non-zero logarithmic capacity



Open problems

The Brown-Shields conjecture for functions on the bidisk:
Is the condition that f ∈ D is outer and the zero set of f (on
the boundary) has logarithmic capacity 0 sufficient for f to be
cyclic?

Sub-problem: Characterize the cyclic polynomials f ∈ Dα for
each α ≤ 1.


