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Introduction

Generalized algebraic eigenvalue problem

Find the eigenpair (λ, v) of Av = λBv ,
where λ is the smallest value, and A,B ∈ Cn×n are large

and sparse Hermitian positive definite (HPD) matrices.

Inverse power method

Start with x0 with ‖x0‖2 = 1
For k = 0,1, . . . , until convergence

xk+1 = A−1Bxk ;

xk+1 = xk+1/‖xk+1‖2;
End For

ρm =
〈xm,Axm〉
〈xm,Bxm〉

(the Rayleigh quotient of xm)
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Introduction (Cont’d)

Inverse power method (modified but equivalent)

Start with x0 with ‖x0‖2 = 1
For k = 0,1, . . . , until convergence

xk+1 = xk−A−1(Axk − ρkBxk ); (i.e., xk+1 = ρkA−1Bxk )
xk+1 = xk+1/‖xk+1‖2;

End For

Comments

−A−1(Axk − ρkBxk ) is a correction of xk

For A large and sparse, it is expensive or impractical to
compute A−1v by solving Ax = v
Instead, construct a preconditioner M ≈ A such that
computing M−1v is much less expensive
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Introduction (Cont’d)

Preconditioned steepest descent (PSD)

Start with x0 with ‖x0‖2 = 1
For k = 0,1, . . . , until convergence

xk+1 = xk+αkM−1(Axk − ρkBxk ); where αk is chosen

such that ρk+1 =
〈xk+1,Axk+1〉
〈xk+1,Bxk+1〉

is minimal for all αk ∈ C
xk+1 = xk+1/‖xk+1‖2;

End For

Comments
For Av = λBv with HPD B, the Courant-Fischer min-max
theorem (variational theorem) applies, namely,
λk = max{min{ρ(x) : x ∈ S, dim(S) = n − k + 1}}.
PSD = application of the steepest descent method for
minimization of the Rayleigh quotient ρ
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Introduction (Cont’d)

SD vs. CG for unconstrained minimization
It is well known that SD converges much slower than CG.
CG constructs a three-term recurrence involving xk , pk
(the latest search direction) and gk (the current gradient).
pk+1 is some linear combination of pk and gk .
gk is the “residual vector” of the system of equations

For SPD linear systems, f (xk ) =
1
2 xH

k Axk − bHxk , and
gk = ∇f (xk ) = Axk − b.
For Hermitian eigenproblems, f (xk ) =

〈xk ,Axk 〉
〈xk ,Bxk 〉 and

gk = ∇f (xk ) =
2

xH
k Bxk

(Axk − ρk Bxk ).

The use of preconditioner M and search direction pk are
critical to accelerate convergence.
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How does CG minimize the Rayleigh quotient?

PCG-like methods for eigenvalue problems

Use PCG-like methods to compute the smallest (left-most)
eigenvalue λ1 (≤ λ2 . . . ≤ λn)
Locally optimal PCG (LOPCG) projects (A,B) onto
span{xk ,gk ,pk} and solves the 3× 3 eigenproblem for the
minimal Ritz value.
Alternatively, PCG forms gk+1 as a linear combination of pk
and gk , then projects (A,B) onto span{xk ,gk+1} and solves
2× 2 eigenproblem for the the minimal Ritz value.
The minimal Ritz values = the minimization of ρk+1 for
xk+1 = xk + αkgk + βkpk over all αk , βk ∈ C (LOPCG) or for
xk+1 = xk + γkpk+1 over all γk ∈ C (PCG).
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Block variants

LOBPCG and BPCG
Use the block variants of LOPCG or PCG to compute the m
smallest eigenvalues {λ1, λ2, . . . , λm}.
LOBPCG: let Xk ∈ Cn×m, Qk = (X H

k AXk )(X H
k BXk )

−1; project
(A,B) onto span{Xk ,M−1(AXk − BXkQk ),Pk}, and find the m
smallest Ritz values
BPCG: form a linear combination of M−1(AXk − BXkQk ) and
Pk as Pk+1; project (A,B) onto span{Xk ,Pk+1}, and find the
m smallest Ritz values.
LO(B)PCG needs fewer iterations than (B)PCG to converge;
(B)PCG requires less arithmetic and storage cost per iteration
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Hermitian nonlinear eigenvalue problems

Problem description

T (λ)v = 0, where T : R→ Cn×n depends continuously and
nonlinearly (in general) on the real variable.
Av = λBv ⇐⇒ T (λ)v = 0 where T (λ) = λB − A.
Assume that a < b are such that T (a) > 0 and T (b) < 0;
assume in addition that λi(µ), the i-th eigenvalue of T (µ),
has exactly one zero on (a,b) for all 1 ≤ i ≤ n.
Let the Rayleigh functional ρ(x) : Cn → R be such that
xHT (ρ(x))x = 0. With the above assumption, for ∀x ∈ Cn,
there exists exactly one ρ(x) ∈ (a,b).
The min-max principle also holds in this case;
λk = max{min{ρ(x) : x ∈ S, dim(S) = n − k + 1}} ∈ (a,b)
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Hermitian nonlinear eigenvalue problems

Problem description
Thanks to the min-max principle, LOBPCG and BPCG can
be applied to find the smallest m eigenvalues on (a,b)
Let Xkej be the j-th column of Xk , and ρ(Xkej) be the
corresponding Rayleigh functional value
Let U =

[
Xk M−1T (diag(ρ(Xk e1), . . . , ρ(Xk em)))Xk Pk

]
.

LOBPCG projects T (·) onto U and solves the 3m × 3m
eigenproblem for the m smallest Ritz values and Ritz
vectors Wk . Update Xk+1 = UWk , Pk+1 = Xk+1 − Xk

BPCG constructs Pk+1 as a linear combination of
M−1T (diag(ρ(Xke1), . . . , ρ(Xkem)))Xk and Pk , projects T (·)
onto U = [Xk Pk+1] and solves the 2m × 2m eigenproblem.
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Hermitian nonlinear eigenvalue problems

Memory cost and convergence rate

LOBPCG and BPCG require a minimum storage for 4m and
3m vectors; expensive for large m (e.g., m ≈ 100 or above)
Use LOPCG or PCG + deflation of converged eigenvectors
instead, which require only a storage of m +O(1) vectors
With the same preconditioner, LOPCG or PCG with deflation
converges much slower than the block variants for large m

Indefinite preconditioner
To accelerate the convergence of LOPCG and PCG with
deflation, use a variable and indefinite preconditioner
For example, use incomplete LDL decomposition of T (σ)
where σ is near the desired eigenvalue being computed;
update the preconditioned when necessary.
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Numerical experiments

Problem 1: An artificial problem

T (λ)v =
(

eλ/
√
πA + sin(λ/4)B − 12C

)
v = 0, where

A = delsq(numgrid(128,′ S′)), B = In,

C =


2 −1

−1
. . . . . .
. . . 2 −1

−1 2

 ∈ Rn×n. n = 15876.

Lowest eigenvalue λ1 = −3.0918, highest λn = 5.3588.
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Numerical results

Problem 1: An artificial problem

Compute the highest 30 eigenvalues to a residual norm 10−10

Incomplete LDL preconditioner with drop tolerance 10−3

Update preconditioner once 10 more eigenpairs have converged

Method Preconditioned MVPs CPU time Memory cost
PCG+Deflation 564 262.6s 30 +O(p)

LOPCG+Deflation 535 377.5s 30 +O(p)
BPCG 372 157.0s 90 +O(p)

LOBPCG 313 164.2s 120 +O(p)

Table: Performance of four PCG-like methods for Problem 1
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Numerical experiments

Problem 2: Vibration of a string
A rational eigenvalue problem arising in the FE discretization
of a boundary problem describing the vibration of a string
with mass m attached by an elastic spring of stiffness k .

R(λ)v =

(
A− λB +

λ

λ− σ
C
)

v = 0, where

A = 1
h


2 −1

−1
. . . . . .

. . . 2 −1
−1 −1

, B = 6
h


4 1

1
. . . . . .
. . . 4 1

1 2

,

C = keneT
n ∈ Rn×n, n = 10000, σ = k/m, h = 1/n.

Lowest eigenvalue λ1 = 4.4820, highest λn = 1.2000× 109.
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Numerical results

Problem 2: vibration of a string

Compute the lowest 50 eigenvalues to a residual norm 10−10

The matrices are tridiagonal; LDL preconditioner can be used
Update preconditioner once 10 more eigenpairs have converged

Method Preconditioned MVPs CPU time Memory cost
PCG+Deflation 702 376.5s 50 +O(p)

LOPCG+Deflation 626 337.0s 50 +O(p)
BPCG 353 211.9s 150 +O(p)

LOBPCG 282 173.7s 200 +O(p)

Table: Performance of four PCG-like methods for Problem 2
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Conclusions

Brief summary and future work
We studied several variants of preconditioned conjugate
gradient methods to solve nonlinear Hermitian eigenvalue
problems for extreme eigenvalues.
Each variant has its strength and weakness (memory vs.
CPU time cost); overall performance is problem-dependent
Orthogonalization dominates the computation; not suitable
for a large number of eigenvalues
Efficient methods based on local orthogonalization for a
large number of interior eigenvalues under development;
results very promising (n ≈ 1M, 1000 eigenvalues).
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