New developments of LOBPCG for large-scale nonlinear eigenvalue problems

Fei Xue

University of Louisiana at Lafayette Department of Mathematics Supported by NSF-1115520

TeXAMP 2013 October 26, 2013 Rice University, Houston, Texas

Fei Xue (UL Lafayette)

LOBPCG for nonlinear eigenproblems

October 2013 1 / 15

• • • • • • • • • • • •

Generalized algebraic eigenvalue problem

Find the eigenpair (λ, v) of $Av = \lambda Bv$, where λ is the **smallest** value, and $A, B \in \mathbb{C}^{n \times n}$ are large and sparse Hermitian positive definite (HPD) matrices.

Inverse power method

Start with x_0 with $||x_0||_2 = 1$ For k = 0, 1, ..., until convergence $x_{k+1} = A^{-1}Bx_k;$ $x_{k+1} = x_{k+1}/||x_{k+1}||_2;$ End For $\rho_m = \frac{\langle x_m, Ax_m \rangle}{\langle x_m, Bx_m \rangle}$ (the Rayleigh quotient of x_m)

< ロ > < 同 > < 三 > < 三

Introduction (Cont'd)

Inverse power method (modified but equivalent)

Start with x_0 with $||x_0||_2 = 1$ For k = 0, 1, ..., until convergence $x_{k+1} = x_k - A^{-1} (Ax_k - \rho_k Bx_k)$; (i.e., $x_{k+1} = \rho_k A^{-1} Bx_k$) $x_{k+1} = x_{k+1} / ||x_{k+1}||_2$; End For

Comments

- $-A^{-1}(Ax_k \rho_k Bx_k)$ is a correction of x_k
- For A large and sparse, it is expensive or impractical to compute $A^{-1}v$ by solving Ax = v
- Instead, construct a **preconditioner** $M \approx A$ such that computing $M^{-1}v$ is much less expensive

Introduction (Cont'd)

Preconditioned steepest descent (PSD)

Start with x_0 with $||x_0||_2 = 1$ For k = 0, 1, ..., until convergence $x_{k+1} = x_k + \alpha_k M^{-1} (Ax_k - \rho_k Bx_k)$; where α_k is chosen such that $\rho_{k+1} = \frac{\langle x_{k+1}, Ax_{k+1} \rangle}{\langle x_{k+1}, Bx_{k+1} \rangle}$ is minimal for all $\alpha_k \in \mathbb{C}$ $x_{k+1} = x_{k+1} / ||x_{k+1}||_2$; End For

Comments

- For $Av = \lambda Bv$ with HPD *B*, the Courant-Fischer min-max theorem (variational theorem) applies, namely, $\lambda_k = \max\{\min\{\rho(x) : x \in S, \dim(S) = n k + 1\}\}.$
- PSD = application of the steepest descent method for minimization of the Rayleigh quotient ρ

Fei Xue (UL Lafayette)

SD vs. CG for unconstrained minimization

- It is well known that SD converges much slower than CG.
- CG constructs a three-term recurrence involving x_k, p_k (the latest search direction) and g_k (the current gradient).
 p_{k+1} is some linear combination of p_k and g_k.
- g_k is the "residual vector" of the system of equations
 - For SPD linear systems, $f(x_k) = \frac{1}{2}x_k^H A x_k b^H x_k$, and $g_k = \nabla f(x_k) = A x_k b$.
 - For Hermitian eigenproblems, $f(x_k) = \frac{\langle x_k, Ax_k \rangle}{\langle x_k, Bx_k \rangle}$ and $g_k = \nabla f(x_k) = \frac{2}{x_k^H Bx_k} (Ax_k \rho_k Bx_k).$
- The use of preconditioner *M* and search direction *p_k* are critical to accelerate convergence.

< ロ > < 同 > < 三 > < 三 >

How does CG minimize the Rayleigh quotient?

PCG-like methods for eigenvalue problems

- Use PCG-like methods to compute the smallest (left-most) eigenvalue λ₁ (≤ λ₂... ≤ λ_n)
- Locally optimal PCG (LOPCG) projects (A, B) onto span{x_k, g_k, p_k} and solves the 3 × 3 eigenproblem for the minimal Ritz value.
- Alternatively, PCG forms g_{k+1} as a linear combination of p_k and g_k, then projects (A, B) onto span{x_k, g_{k+1}} and solves 2 × 2 eigenproblem for the the minimal Ritz value.
- The minimal Ritz values = the minimization of ρ_{k+1} for $x_{k+1} = x_k + \alpha_k g_k + \beta_k p_k$ over all $\alpha_k, \beta_k \in \mathbb{C}$ (LOPCG) or for $x_{k+1} = x_k + \gamma_k p_{k+1}$ over all $\gamma_k \in \mathbb{C}$ (PCG).

< ロ > < 同 > < 回 > < 回 > < 回 > <

LOBPCG and BPCG

- Use the block variants of LOPCG or PCG to compute the *m* smallest eigenvalues {λ₁, λ₂,..., λ_m}.
- LOBPCG: let X_k ∈ C^{n×m}, Q_k = (X_k^HAX_k)(X_k^HBX_k)⁻¹; project (A, B) onto span{X_k, M⁻¹(AX_k − BX_kQ_k), P_k}, and find the *m* smallest Ritz values
- BPCG: form a linear combination of M⁻¹(AX_k BX_kQ_k) and P_k as P_{k+1}; project (A, B) onto span{X_k, P_{k+1}}, and find the *m* smallest Ritz values.
- LO(B)PCG needs fewer iterations than (B)PCG to converge;
 (B)PCG requires less arithmetic and storage cost per iteration

Problem description

- *T*(λ)*v* = 0, where *T* : ℝ → ℂ^{n×n} depends continuously and nonlinearly (in general) on the real variable.
- $Av = \lambda Bv \iff T(\lambda)v = 0$ where $T(\lambda) = \lambda B A$.
- Assume that a < b are such that T(a) > 0 and T(b) < 0; assume in addition that $\lambda_i(\mu)$, the *i*-th eigenvalue of $T(\mu)$, has exactly one zero on (a, b) for all $1 \le i \le n$.
- Let the Rayleigh functional $\rho(x) : \mathbb{C}^n \to \mathbb{R}$ be such that $x^H T(\rho(x)) x = 0$. With the above assumption, for $\forall x \in \mathbb{C}^n$, there exists exactly one $\rho(x) \in (a, b)$.
- The min-max principle also holds in this case; $\lambda_k = \max\{\min\{\rho(x) : x \in S, \dim(S) = n - k + 1\}\} \in (a, b)$

Problem description

- Thanks to the min-max principle, LOBPCG and BPCG can be applied to find the smallest *m* eigenvalues on (*a*, *b*)
- Let X_ke_j be the *j*-th column of X_k, and ρ(X_ke_j) be the corresponding Rayleigh functional value
 Let U = [X_k M⁻¹T(diag(ρ(X_ke₁),...,ρ(X_ke_m)))X_k P_k].
 LOBPCG projects T(·) onto U and solves the 3m × 3m eigenproblem for the *m* smallest Ritz values and Ritz vectors W_k. Update X_{k+1} = UW_k, P_{k+1} = X_{k+1} X_k
- BPCG constructs P_{k+1} as a linear combination of M⁻¹T(diag(ρ(X_ke₁),...,ρ(X_ke_m)))X_k and P_k, projects T(·) onto U = [X_k P_{k+1}] and solves the 2m × 2m eigenproblem.

< ロ > < 同 > < 回 > < 回 > < 回 > <

Hermitian nonlinear eigenvalue problems

Memory cost and convergence rate

- LOBPCG and BPCG require a minimum storage for 4m and 3m vectors; expensive for large m (e.g., $m \approx 100$ or above)
- Use LOPCG or PCG + deflation of converged eigenvectors instead, which require only a storage of m + O(1) vectors
- With the same preconditioner, LOPCG or PCG with deflation converges much slower than the block variants for large *m*

Indefinite preconditioner

- To accelerate the convergence of LOPCG and PCG with deflation, use a **variable and indefinite** preconditioner
- For example, use incomplete LDL decomposition of *T*(*σ*) where *σ* is near the desired eigenvalue being computed; update the preconditioned when necessary.

Numerical experiments

Problem 1: An artificial problem

•
$$T(\lambda)v = \left(e^{\lambda/\sqrt{\pi}}A + \sin(\lambda/4)B - 12C\right)v = 0$$
, where
 $A = \text{delsq(numgrid(128,'S'))}, B = I_n,$
 $C = \begin{bmatrix} 2 & -1 \\ -1 & \ddots & \ddots \\ & \ddots & 2 & -1 \\ & -1 & 2 \end{bmatrix} \in \mathbb{R}^{n \times n}. n = 15876.$
• Lowest eigenvalue $\lambda_1 = -3.0918$, highest $\lambda_n = 5.3588$.

LOBPCG for nonlinear eigenproblems

Þ

DQC

- ₹ ∃ →

Problem 1: An artificial problem

- Compute the highest 30 eigenvalues to a residual norm 10⁻¹⁰
- Incomplete LDL preconditioner with drop tolerance 10⁻³
- Update preconditioner once 10 more eigenpairs have converged

Method	Preconditioned MVPs	CPU time	Memory cost
PCG+Deflation	564	262.6s	30 + O(p)
LOPCG+Deflation	535	377.5s	30 + O(p)
BPCG	372	157.0s	90 + O(p)
LOBPCG	313	164.2s	120 + O(p)

Table: Performance of four PCG-like methods for Problem 1

Numerical experiments

Problem 2: Vibration of a string

• A rational eigenvalue problem arising in the FE discretization of a boundary problem describing the vibration of a string with mass *m* attached by an elastic spring of stiffness *k*.

•
$$R(\lambda)v = \left(A - \lambda B + \frac{\lambda}{\lambda - \sigma}C\right)v = 0$$
, where

$$A = \frac{1}{h}\begin{bmatrix} 2 & -1 \\ -1 & \ddots & \ddots \\ \ddots & 2 & -1 \\ & -1 & -1 \end{bmatrix}, B = \frac{6}{h}\begin{bmatrix} 4 & 1 \\ 1 & \ddots & \ddots \\ & \ddots & 4 & 1 \\ & & 1 & 2 \end{bmatrix},$$

$$C = ke_n e_n^T \in \mathbb{R}^{n \times n}, n = 10000, \sigma = k/m, h = 1/n.$$
• Lowest eigenvalue $\lambda_1 = 4.4820$, highest $\lambda_n = 1.2000 \times 10^9$.

Problem 2: vibration of a string

- Compute the lowest 50 eigenvalues to a residual norm 10⁻¹⁰
- The matrices are tridiagonal; LDL preconditioner can be used
- Update preconditioner once 10 more eigenpairs have converged

Method	Preconditioned MVPs	CPU time	Memory cost
PCG+Deflation	702	376.5s	50 + O(p)
LOPCG+Deflation	626	337.0s	50 + O(p)
BPCG	353	211.9s	150 + O(p)
LOBPCG	282	173.7s	200 + O(p)

Table: Performance of four PCG-like methods for Problem 2

Brief summary and future work

- We studied several variants of preconditioned conjugate gradient methods to solve nonlinear Hermitian eigenvalue problems for extreme eigenvalues.
- Each variant has its strength and weakness (memory vs. CPU time cost); overall performance is problem-dependent
- Orthogonalization dominates the computation; not suitable for a large number of eigenvalues
- Efficient methods based on **local orthogonalization** for a large number of interior eigenvalues under development; results very promising ($n \approx 1$ M, 1000 eigenvalues).

< ロ > < 同 > < 三 > < 三 >