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Introduction

Generalized algebraic eigenvalue problem

Find the eigenpair (), v) of Av = ABv,
where ) is the smallest value, and A, B € C"™*" are large
and sparse Hermitian positive definite (HPD) matrices.

Inverse power method

Start with xg with ”X0”2 =
For k =0,1,..., until convergence
X1 = A BXy;

X1 = Xk1 /[ Xks1112;

End For
_ {Xm, AXm) : .
Pm = —<Xm, B (the Rayleigh quotient of xy,)

v

Fei Xue (UL Lafayette) LOBPCG for nonlinear eigenproblems October 2013 2/15



Introduction (Cont’d)

Inverse power method (modified but equivalent)

Start with xp with || xp|l2 = 1

For k =0,1,..., until convergence
Xkr1 = Xk—A"(Axx — pkBxy); (i.e., X1 = pkA~1Bxy)
X1 = Xkt /|| Xkt [l 2;

End For )

Comments
@ — A "(Axx — pxBx) is a correction of x
@ For Alarge and sparse, it is expensive or impractical to
compute A~'v by solving Ax = v
@ Instead, construct a preconditioner M ~ A such that
computing M~'v is much less expensive
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Introduction (Cont’d)

Preconditioned steepest descent (PSD)

Start with xo with ||X0||2 =
For k =0,1,..., until convergence
Xk+1 = Xk+OékM_1 (Axx — pkBxx); where « is chosen

such that pxq = % is minimal for all o € C

Xk+1 = X1/ || Xn411]2;
End For

Comments

@ For Av = \Bv with HPD B, the Courant-Fischer min-max
theorem (variational theorem) applies, namely,
Ak = max{min{p(x) : x € S, dim(S) =n—k+1}}.

@ PSD = application of the steepest descent method for
minimization of the Rayleigh quotient p
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Introduction (Cont’d)

SD vs. CG for unconstrained minimization
@ Itis well known that SD converges much slower than CG.

@ CG constructs a three-term recurrence involving Xk, px
(the latest search direction) and g (the current gradient).
Pk1 is some linear combination of px and g.

@ g is the “residual vector” of the system of equations

o For SPD linear systems, f(xx) = 3x} Ax, — b"xx, and
Ok = Vf(Xk) = AXk — b.

e For Hermitian eigenproblems, f(x)
gk = Vf(Xk) = 2 (AXk — pkBXk).

X Bxic
@ The use of preconditioner M and search direction py are
critical to accelerate convergence.

_ {XoAXk)

= TxcBxo and
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How does CG minimize the Rayleigh quotient?

PCG-like methods for eigenvalue problems

@ Use PCG-like methods to compute the smallest (left-most)
eigenvalue \1 (< Xa... < Ap)

@ Locally optimal PCG (LOPCGQG) projects (A, B) onto
span{ Xk, gk, Px} and solves the 3 x 3 eigenproblem for the
minimal Ritz value.

@ Alternatively, PCG forms gk ¢ as a linear combination of px
and g, then projects (A, B) onto span{ Xk, gk 1} and solves
2 x 2 eigenproblem for the the minimal Ritz value.

@ The minimal Ritz values = the minimization of py, 1 for
Xk+1 = Xk + ax9k + Bkpk over all ak, Bk € C (LOPCG) or for
Xk11 = Xk + YkPk+1 over all v, € C (PCQG).
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Block variants

LOBPCG and BPCG

@ Use the block variants of LOPCG or PCG to compute the m
smallest eigenvalues {\, Ao, ..., Am}.

@ LOBPCG: let X, € C™™, Q = (X AXk)(X['BXi)~"; project
(A, B) onto span{ Xy, M~1(AXx — BXxQx), Px}, and find the m
smallest Ritz values

@ BPCG: form a linear combination of M~"(AX — BXxQx) and
Py as Py 1; project (A, B) onto span{ Xy, Px.1}, and find the
m smallest Ritz values.

@ LO(B)PCG needs fewer iterations than (B)PCG to converge;
(B)PCG requires less arithmetic and storage cost per iteration)
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Hermitian nonlinear eigenvalue problems

Problem description

@ T(\)v =0, where T:R — C"™" depends continuously and
nonlinearly (in general) on the real variable.

@ Av = \Bv <= T(A\)v =0where T(\) = \B— A

@ Assume that a < b are such that T(a) > 0 and T(b) < 0;
assume in addition that \;(x), the i-th eigenvalue of T(u),
has exactly one zero on (a,b) forall 1 </ < n.

@ Let the Rayleigh functional p(x) : C” — R be such that
xHT(p(x))x = 0. With the above assumption, for Vx € C”,
there exists exactly one p(x) € (a, b).

@ The min-max principle also holds in this case;

A = max{min{p(x): x € S,dim(S)=n—k+1}} € (a,b)

V.
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Hermitian nonlinear eigenvalue problems

Problem description

@ Thanks to the min-max principle, LOBPCG and BPCG can
be applied to find the smallest m eigenvalues on (a, b)

@ Let Xxe; be the j-th column of Xy, and p(Xye;) be the
corresponding Rayleigh functional value
Let U= [Xk m-1 T(diag(p(Xke1 ), ce ,p(Xkem)))Xk Pk] .
LOBPCG projects T(-) onto U and solves the 3m x 3m
eigenproblem for the m smallest Ritz values and Ritz
vectors Wj. Update Xy 1 = UWk, Pyxi1 = X1 — Xk

@ BPCG constructs P 1 as a linear combination of
M~1T(diag(p(Xke1), ..., p(Xxem)))Xx and Py, projects T ()

onto U = [Xx Pk1] and solves the 2m x 2m eigenproblem.
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Hermitian nonlinear eigenvalue problems

Memory cost and convergence rate

@ LOBPCG and BPCG require a minimum storage for 4m and
3m vectors; expensive for large m (e.g., m ~ 100 or above)

@ Use LOPCG or PCG + deflation of converged eigenvectors
instead, which require only a storage of m+ O(1) vectors

@ With the same preconditioner, LOPCG or PCG with deflation
converges much slower than the block variants for large m

V.

Indefinite preconditioner

@ To accelerate the convergence of LOPCG and PCG with
deflation, use a variable and indefinite preconditioner

@ For example, use incomplete LDL decomposition of T (o)
where ¢ is near the desired eigenvalue being computed;
update the preconditioned when necessary.

v
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Numerical experiments

Problem 1: An artificial problem

o T\ = (e*/ﬁA +sin(\/4)B — 120) v =0, where

A = delsqg(numgrid(128, s’)), B = Iy,
2 -1

C= T € RN n = 15876.

@ Lowest eigenvalue A\ = —3.0918, highest A\, = 5.3588.
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Numerical results

Problem 1: An artificial problem

@ Compute the highest 30 eigenvalues to a residual norm 109

@ Incomplete LDL preconditioner with drop tolerance 103
@ Update preconditioner once 10 more eigenpairs have converged

Method | Preconditioned MVPs | CPU time | Memory cost
PCG+Deflation 564 262.6s 30+ O(p)
LOPCG+Deflation 535 377.5s 30+ O(p)
BPCG 372 157.0s | 90+ O(p)
LOBPCG 313 164.2s | 120+ O(p)

Table: Performance of four PCG-like methods for Problem 1
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Numerical experiments

Problem 2: Vibration of a string

@ A rational eigenvalue problem arising in the FE discretization
of a boundary problem describing the vibration of a string
with mass m attached by an elastic spring of stiffness k.

@ R(\)v = <A—>\B+ y A C> v =0, where
— 0
2 -1 4 1
A1 1 . e B¢ 1 ,
' 2 —1 .41
-1 -1 1 2

C = kepel € R™", n=10000, 0 = k/m, h=1/n.
@ Lowest eigenvalue A\ = 4.4820, highest A\, = 1.2000 x 10°.

v
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Numerical results

Problem 2: vibration of a string

@ Compute the lowest 50 eigenvalues to a residual norm 10~0
@ The matrices are tridiagonal; LDL preconditioner can be used
@ Update preconditioner once 10 more eigenpairs have converged

Method | Preconditioned MVPs | CPU time | Memory cost
PCG+Deflation 702 376.5s 50 + O(p)
LOPCG+Deflation 626 337.0s 50 + O(p)
BPCG 353 2119s | 150 + O(p)
LOBPCG 282 173.7s | 200+ O(p)

Table: Performance of four PCG-like methods for Problem 2
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Conclusions

Brief summary and future work

@ We studied several variants of preconditioned conjugate
gradient methods to solve nonlinear Hermitian eigenvalue
problems for extreme eigenvalues.

@ Each variant has its strength and weakness (memory vs.
CPU time cost); overall performance is problem-dependent

@ Orthogonalization dominates the computation; not suitable
for a large number of eigenvalues

@ Efficient methods based on local orthogonalization for a
large number of interior eigenvalues under development;
results very promising (n ~ 1M, 1000 eigenvalues).
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