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1.1 CAP favorites 2

Favored problems for computer-assisted proofs
are equations with no free parameters.

Some appear in renormalization, like

The hierarchical model

F 2 ∗Gaussian ≡ F (mod scaling)

The Feigenbaum-Cvitanović equation

F ◦ F ≡ F (mod scaling)

MacKay’s fixed point equation (commuting area-preserving maps)

[

G
F ◦G

]

≡

[

F
G

]

(mod scaling)

A related equation for Hamiltonians on T
2 × R

2

H ◦Nontrivial ≡ H (mod trivial)



1.2 CAP current 3

Current developments in CAPs
focus on problems that (cannot be solved by hand and) involve

• exploring new areas of application,
• developing new methods,
• testing the boundaries of what is feasible.

Low regularity problems and
boundary value problems on nontrivial domains, like

∆u = f(u) on Ω , f = g on ∂Ω .

Beginnings by [ M.T. Nakao, N. Yamamoto, . . . 1995+ ].

Orbits in dissipative PDEs like Kuramoto-Sivashinsky,

∂tu+ 4∂4
xu+α∂2

xu+ 2αu∂xu = 0 .

Periodic: [ P. Zgliczyński 2008-10; G. Arioli, H.K. 2010 ].
Chaotic: a long term goal.

Existence and stability of waves and patterns.
A good starting point is the Fitzhugh-Nagumo equation in 1 spatial dimension,

∂tw1 = ∂2
xw1 + f(w1)−w2 ,

∂tw2 = ǫ(w1 − γw2) .
See page 5.



1.3 CAP exciting 4

Plus all the exciting work by

M. Berz , R. Castelli , S. Day , R. de la Llave , D. Gaidashev , M. Gameiro , A. Haro ,
J.M. James, T. Johnson, S. Kimura, J.P. Lessard, K. Mischaikow, M. Mrozek, M.T. Nako,
S. Oishi, M. Plum, S.M. Rump, W. Tucker, J.B. van den Berg, D. Wilczak, N. Yamamoto,
P. Zgliczyński,

and many others.

Motivation for our current work:

[ D. Ambrosi, G. Arioli, F. Nobile, A. Quarteroni 2011 ] proposed and studied numerically
an improved version of the Fitzhugh-Nagumo equation:

∂t

(

(1− βw1)w1

)

= ∂x

(

(1− βw1)
−1∂xw1

)

+ (1− βw1)f(w1)− (1− βw1)w2 ,

∂t

(

(1− βw1)w2

)

= ǫ(1− βw1)
(

w1 − γw2

)

.

Existence of a pulse solution: proved in [ D. Ambrosi, G. Arioli, H.K. 2012 ].
Stability: ?



2.1 The FHN model 5

The FitzHugh-Nagumo equations in one spatial dimension are

∂tw1 = ∂2
xw1 + f(w1)−w2 ,

∂tw2 = ǫ(w1 − γw2) ,

with ǫ, γ ≥ 0 and

f(r) = r(r − a)(1− r) , 0 < a < 1
2 .

They describe the propagation of electrical signals in biological tissues.

w1 = w1(x, t) action potential (voltage difference across cell membrane).

w2 = w2(x, t) gate variable (fraction of ion channels that are open, slow recovery).

ǫ−1 recovery time.

We consider both on the circle Sℓ = R/(ℓZ) with circumference ℓ = 128, and the real line R.

A pulse traveling with velocity c is a solution wj(x, t) = φj(x− ct).

The equation for such a pulse can be written as

φ′ = X(φ) , φ =





φ0

φ1

φ2



 , X(φ) =





−cφ0 − f(φ1) + φ2

φ0

−c−1ǫ(φ1 − γφ2)



 .

In the case of a pulse on R, one also imposes the conditions φ(±∞) = 0 .

So a pulse φ corresponds to a homoclinic orbit for X.



2.2 small epsilon 6

For ǫ = 0 and any c > 0 we have X(φ) = 0 ⇐⇒ φ0 = 0 , φ2 = f(φ1) ,

with DX(φ) having no positive eigenvalue at a fixed point φ when f ′(φ1) < 0.

For a specific velocity c > 0 there are “connecting orbits” as shown below.

For ε ≪ 1 :

Existence of a fast pulse for some c > 0 by [ S. Hastings 1976; G. Carpenter 1977; . . . ]

and several others.

Stability of the pulse by [ C.K.R.T. Jones 1984, E. Yanagida 1985 ]

using results from [ J.W. Evans I-IV 1972-1975 ]



3.1 New results 7

Consider now more “standard” model values ǫ = 1
100 , γ = 5 , a = 1

10 ,
and ℓ = 128 in the periodic case.

Theorem 1. The FHN equation on R× Sℓ has a real analytic and exponentially stable traveling

pulse solution with velocity c = 0.470336308 . . .

Theorem 2. The FHN equation on R×R has a traveling pulse solution with c = 0.470336270 . . .
This solution is real analytic, decreases exponentially at infinity, and is exponentially stable.

Space C: w1 and w2 are bounded and uniformly continuous in x. Using the sup-norm.
Domain C′: w1, ∂xw1, ∂

2
xw1, w2, ∂xw2 belong to C.



3.2 Sketch of the approach 8

We use the notation w
¯
= [w1 w2]

⊤ and wj : t 7→ wj(t) and wj(t) : x 7→ wj(x, t).
A pulse solution φ

¯
is exponentially stable if for any nearby solution w

¯
∈ C′ of FHN,

w
¯
(t) converges exponentially to some translate of φ

¯
, as t → ∞.

The exponential rate is fixed, and other constants only depend on norms.

Steps of the proof.

(1) Determine the pulse and its velocity by
(P) formulating and solving an appropriate fixed point problem.
(H) finding c where the stable manifold Ws

c of the origin intersects (in fact includes)
the unstable manifold Wu

c .

(2) Get full exponential stability from linear exponential stability.

(3) Relate linear exponential stability to the spectrum of Lφ

and show that the relevant part of the spectrum is discrete.

(4) Prove bounds that exclude eigenvalues outside a manageable region Ω containing 0.

(5) Show that Lφ has non nonzero eigenvalue in Ω by
(P) using perturbation theory about a simpler operator, in a simpler space.

(H1) using that such eigenvalues are related to the zeros of the Evans function and
(H2) estimating the Evans function along ∂Ω.

The fact (5H1) was proved in [ J.W. Evans IV ] for general “nerve axon equations”.
Steps (2H) and (3H) are proved in [ J.W. Evans I-III ] but we need (2) and (3).



4.1 Existence, periodic 9

Existence of the periodic pulse.

Rescale from periodicity ℓ to periodicity 2π. Let η = ℓ/(2π).
Consider a Banach space F of functions that are analytic on a strip.
Rewrite the pulse equation as an equation for ϕ = φ1(η.) alone,

g = Nc(g) , g = I0ϕ = ϕ− average(ϕ) ,

where

Nc(g) = η2
(

D2− κ2I)−1
(

I− κD−1
)

I0

(

−f(ϕ) + ǫγg + ǫc−1ηD−1
[

γf(ϕ)− ϕ
]

)

.

“Eliminate” the eigenvalue 1 using a projection P of rank 1.

N ′
c(g) = (I− P )Nc(g) , PN ′

c(g) = 0 , g ∈ I0F .

The fixed point problem for N ′
c is nonsingular. Now use a quasi-Newton map

Mc(h) = h+N ′
c(p0 +Ah)− (p0 +Ah) , h ∈ I0F ,

with p0 an approximate fixed point of N ′
c and A an approximation to

[

I−DN ′
c(p0)

]−1
.

Lemma 3. For some c0 = 0.4703363082 . . . and K, r, ε > 0 satisfying ε+Kr < r,

‖Mc(0)‖ < ε , ‖DMc(h)‖ < K , c ∈ I , h ∈ Br(0) .

where I = [c0−2−60, c0+2−60]. Furthermore c 7→ PN ′
c(p0 + Ah) changes sign on I for every

h ∈ Br(0).



4.2 Existence, homoclinic 10

Existence of the homoclinic pulse. Solve

φ′ = DX(0)φ+B(φ1) , DX(0) =





−c a 1
1 0 0
0 −c−1ǫ c−1ǫγ



 ,

with B(0) = 0 and DB(0) = 0.

For the local stable manifold write φs(y) = Φs(eµ0y) , and

Φs(r) = ℓs(r) + Zs(r) , ℓs(r) = rU0 , Zs(r) = O(r2) ,

where U0 is the eigenvector of DX(0) for the eigenvalue µ0 that has a negative real part.

Zs =
[

∂y −DX(0)
]−1

B(ℓs1 +Zs
1) , ∂y = µ0r∂r .

This equation can be solved “order by order” in powers of r.
Prolongation from y = 5

2 backwards in time to y = −43 is done via a simple Taylor integrator.

For the local unstable manifold write φu(y) = Φu(Reν0y, Reν̄0y) , for some R > 0, and

Φu(s) = ℓu(s) + Zu(s) , ℓu(s) = s1V0 + s2V̄0 , Zu(s) = O(|s|2) ,

where V0 and V̄0 are eigenvectors of DX(0) for the eigenvalues ν0 and ν̄0, respectively.

Zu =
[

∂y −DX(0)
]−1

B(ℓu1 +Zu
1 ) , ∂y = ν0s1∂s1 + ν̄0s2∂s2 .

This equation can be solved “order by order” in powers of s1 and s2.



4.3 Existence, homoclinic 11

Recall that everything depends on the velocity parameter c.

For the local unstable manifold we use a space A where

Zu
j (c, s) =

∑

k+m≥2

Zu
j,k,m(c)sk1s

m
2 , ‖Zu

j ‖ =
∑

k+m≥2

‖Zu
j,k,m‖ρk+m .

The coefficients Zu
j,k,m belong to a space B of functions that are analytic on a disk |c − c0| < ̺.

Similarly for the functions c 7→ Zs
j (c,−43).

The two families of manifolds intersect if the difference

Υ(c, σ, τ) = Φu(c, σ + iτ, σ − iτ)− φs(c,−43)

vanishes for some real values of c, σ, and τ . Let ρ = 2−5 and ̺ = 2−96.

Lemma 4. For some c0 = 0.4703362702 . . . the function Υ is well defined and differentiable on

the domain |σ+ iτ | < ρ and |c− c0| < ̺. In this domain there exists a cube where Υ has a unique

zero, and |c− c0| < 2−172 for all points in this cube.



4.4 Existence, homoclinic 12

Stable and unstable manifolds.
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5.1 Stability: reduction to linear 13

Reduction to linear stability.

For convenience use moving coordinates y = x− tc and wj(x, t) = uj(y, t), so

∂tu
¯
=

[

∂2
yu1 + c∂yu1 + f(u1)− u2

c∂yu2 + ǫ[u1 − γu2]

]

, u
¯
=

[

u1

u2

]

.

The linearization about a traveling pulse uj(y, t) = φj(y) is

∂tv
¯
= Lφv

¯
, Lφv

¯
=

[

∂2
y + c∂y + f ′(φ1) −1

ǫ c∂y − ǫγ

]

v
¯
.

Notice that φ
¯

′ is a stationary point: Lφφ
¯

′ = 0.

Write v
¯
(0) 7→ v

¯
(t) as etLφ .

φ
¯

′ is said to be exponentially stable if there exists a continuous linear functional p : C → R,

and two constants C,ω > 0, such that
∥

∥etLφv
¯
− p(v

¯
)φ
¯

′
∥

∥ ≤ Ce−tω‖v
¯
‖ for all v

¯
∈ C′ and all t ≥ 0.

Lemma 5. If φ
¯

′ is exponentially stable for the linear system then φ
¯

is exponentially stable for

the full system.

Our proof is naturally not far from [ J.W. Evans I ].
It applies both to the periodic and the homoclinic case (and is short).



5.2 Stability: reduction to eigenvalues 14

Reduction to an eigenvalue problem.

Split Lφ : C′ → C as in

Lφ = L0 + F , L0 =

[

D2 + cD − θ −1
ǫ cD − ǫγ

]

, F =

[

f ′(φ1) + θ 0
0 0

]

,

where θ = −f ′(0) = −a, unless specified otherwise.

Proposition 6. L0 generates a strongly continuous semigroup on C that satisfies
∥

∥etL0
∥

∥ ≤ Ce−tǫγ

for some C > 0 and all t ≥ 0.

Proposition 7. F is compact relative to L0. And FetL0 is compact for t > 0.

Proposition 8. The difference et(L0+F ) − etL0 is compact for all t ≥ 0.

Superficially, this follows from bounded∗compact=compact and

et(L0+F ) − etL0 =

∫ t

0

e(t−s)(L0+F )FesL0 ds .

But need something like [ J. Voigt 1992 ] for the strong operator topology.

Consider half-planes Hα =
{

z ∈ C : Re(z) > −α
}

.

Proposition 9. Assume that Lφ has no spectrum in Hα except for a simple eigenvalue 0. Denote

by P⊥ the spectral projection associated with the spectrum of Lφ in C\{0}. Then for every ω < α
there exists a constant Cω > 0 such that

∥

∥etLφP⊥

∥

∥ ≤ C−tω
ω for all t ≥ 0.



6.1 Eigenvalue bounds 15

For eigenvalue bounds use the Hilbert space H,

〈u, v〉 = ǫ1/2
∫

u1(y)v1(y) dy + ǫ−1/2

∫

u2(y)v2(y) dy .

Fact 10. The spectrum of L0 : H′ → H consists of . . .

λ−(p) = −p2 + icp− θ −
1

2

[

√

(p2 + θ − ǫγ)2 − 4ǫ− (p2 + θ − ǫγ)
]

,

λ+(p) = icp− ǫγ +
1

2

[

√

(p2 + θ − ǫγ)2 − 4ǫ− (p2 + θ − ǫγ)
]

.

Proposition 11. If λ is an eigenvalue of Lφ : H′ → H then

Re(λ) ≤ Λ , Λ
def
= sup

r
f ′(r) = 91

300 .

Proposition 12. For every δ > 0 there exists ω > 0 such that the following holds.

If λ is any eigenvalue of Lφ : H′ → H, then either Re (λ) < −ω or else

∣

∣Im(λ)
∣

∣ ≤
√

c2 + γ−1 Λ1/2 + δ .

Using our bounds on c we have
√

c2 + γ−1 Λ1/2 < Θ
def
= 0.35745 .



6.2 Eigenvalues, periodic 16

Estimating eigenvalues in the periodic case.

V Space of 2π-periodic functions that are analytic on a strip;
contains all relevant eigenvectors of Lφ : C′ → C.

P Projection onto low “Fourier modes”.
M,U Suitable Fourier-multiplier operators.

M−1LφM = L1 , Ls = L0 + sK , L0 = M−1L0M + PFP .

Control first zI− L0 and then

zI− Ls =
[

I− sK(zI− L0)
−1

]

(zI− L0) , z ∈ Γ .

Estimate the spectral radius of the “green operator”, using

U
[

K(zI− L0)
−1

]

U−1 =
(

UKU)
[

U−1(zI− L0)
−1U−1

]

.

Lemma 13. L0 : V → V has no spectrum in Ω except for a simple eigenvalue.

Furthermore, the following bound holds for all z ∈ Γ:

‖UKU‖ <
1

2500
,

∥

∥U−1(zI− L0)
−1U−1

∥

∥ < 2500 .



6.3 Eigenvalue problem, homoclinic 17

Estimating eigenvalues in the homoclinic case à la [ J.W. Evans IV ].

Write Lφu
¯
= λu

¯
as

u′ = Aφ1(λ)u , Aϕ(z) =





−c −f ′(ϕ) + z 1
1 0 0
0 −c−1ǫ c−1(ǫγ + z)



 , z ∈ Hα .

Need u ∈ C and thus bounded; in fact vanishing at ±∞ since
The matrix A0(z) is hyperbolic. One eigenvalue µz has negative real part.

First solve

u′ = Aφ1
(z)u , lim

y→+∞
uz(y)e

−yµz = Uz , A0(z)Uz = µzUz .

As y → −∞ the normalized uz(y) must approach the unstable subspace of A0(z)
which is perpendicular to the stable subspace of A0(z)

⊤.

Propagate this condition from −∞ to y by solving the adjoint equation

v′ = −Aφ1
(z)⊤v , lim

y→−∞
vz(y)e

yµz = Vz , A0(z)
⊤Vz = µzVz .

Then
[v⊤

z uz]
′ =

[

v′z]
⊤uz + v⊤

z u
′
z = [−Aφ1(z)

⊤vz]
⊤ + v⊤

z Aφ1(z)u
′
z = 0 .

So
∆(z) = vz(y)

⊤uz(y) (Evans function)

is independent of y and vanishes precisely when z is an eigenvalue of Lφ.



6.4 Eigenvalue problem, homoclinic 18

Theorem. [ J.W. Evans IV ]. ∆ is analytic in Hα and has a zero of order m at λ if and only if

λ is an eigenvalue of Lφ with algebraic multiplicity m.

Let r = 2485
8192 and θ = 5857

16384 . Denote by R the closed rectangle in C with corners at ±iθ and r± iθ.
Let D be the closed disk in C, centered at the origin, with radius 1

32 .

Lemma 14. ∆ has a simple zero at 0 and no other zeros in D.

The restriction of ∆ to the boundary of R \D takes no real values in the interval [0,∞).

Values of 2−31∆ along the boundary of R \D.
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7.1 Some periodic details 19

Some details: periodic case

For 2π-periodic functions on the strip |Im (x)| < ρ we use the Banach algebra F ,

h(x) =
∞
∑

k=0

hk cos(kx) +
∞
∑

k=1

h−k sin(kx) , ‖h‖ =
∞
∑

k=−∞

|hk| cosh(ρk) .

Convenient for products, antiderivatives; and for estimating operator norms:
Let (e1, e2, . . .) be an enumeration of the Fourier modes ck cos(k.) and sk sin(k.),
with ck and sk chosen in such a way that ‖ej‖ = 1 for all j. Then

‖A‖ = sup
j

‖Aej‖ ≤ max
{

‖Ae1‖, ‖Ae2‖, . . . , ‖Aen−1‖, ‖AEn‖
}

,

where En = {en, en+1, . . .}.

This is used with A = DMc(h) for Lemma 3 and A = UKU for Lemma 13.

To estimate U−1(zI− L)−1U−1 along Γ for the low-mode (matrix) part L = PLφP of L0

we cover Γ with disks |z − zj | < δj with centers zj ∈ Γ.
The resolvent matrices Rj = (zjI−L)−1 are computed explicitly (with error estimates, of course)
and shown to satisfy δj‖Rj‖ < 1. This bound implies that

zI− L =
[

I + (z − zj)Rj

]

(zjI− L)

is invertible whenever |z − zj | < δj . Its inverse is bounded by . . .



7.1 Some homoclinic details 20

Some details: homoclinic case

The equations for uz, vz are integrated the same way as those for φs, φu. Write

uz(y) = e−(µ0−µz)y Uz(e
µ0y) , vz(y) = e−(ν0+ν̄0+µz)y Vz

(

Reν0y, Reν̄0y
)

,

and
Uz(s) = r Uz + Z

s(z, r) , Z
s
j(z, r) =

∑

n≥2

Z
s
j,n(z)r

n ,

Vz(s) = s1s2Vz + Z
u(z, s) , Z

u
j (z, s) =

∑

k+m≥3

Z
u
j,k,m(z)sk1s

m
2 .

The resulting equations for Zs and Z
u can again be solved order by order .

The coefficients Zs
j,n and Z

u
j,k,m belong to a space B of analytic functions on |z − z0| < ̺.

As in the case of φs, the resulting curve vz is prolonged backwards in time from y = 5
2 to y = −43.

The integration uses Taylor expansions that can be computed order by order .
At the end we evaluate ∆(z) = vz(−43)⊤uz(−43) .

Let (Xk, ‖.‖k) be Banach spaces for k = 0, 1, 2, . . . and let (X, ‖.‖) be the Banach space of all
functions x : N →

⋃

k Xk with x(k) ∈ Xk for all k and ‖x‖ =
∑

k ‖x(k)‖k finite. Denote by Pn

the projection on X defined by setting (Pnx)(k) = x(k) for k ≤ n and (Pnx)(k) = 0 for k > n.

Proposition 15. ( order by order ) Let Y0 be a closed bounded subset of X such that PnY0 ⊂ Y0

for all n, and P0Y0 = {y0} for some y0 ∈ X. Let F : Y0 → Y0 be continuous, having the property

that Pn+1F = Pn+1FPn for all n. Then F has a unique fixed point y ∈ Y0, and Pny = PnF
m(y0)

whenever n ≤ m.



8.1 More details 21

S an algebra (commutative Banach algebra with unit). Subspaces Si.
F any algebra of functions f : D → S including the constant functions.
R(S) Scalars: the representable subsets of S. Includes an element Undefined.
R(S,F) same, but any ball {s ∈ Si : ‖s‖ ≤ r} replaced by {f ∈ Fi : ‖f‖ ≤ r} .
Sum : R(S)×R(S) → R(S) such that s1 ∈ S1 and s2 ∈ S2 implies s1 + s2 ∈ Sum(S1, S2) .

Consider a disk Dr = {z ∈ C : |z| < r} for some representable r > 0.
Taylor1s: define a space Tr of analytic functions f : Dr → S,

f(z) =

∞
∑

n=0

cnz
n , ‖f‖T =

∞
∑

n=0

‖cn‖S r
n , cn ∈ S .

R(Tr) consists of all sets

F : z 7→
d

∑

n=0

C(n)zn , C(0 . . k − 1) ∈ R(S) , C(k . . d) ∈ R(S,Tr) .

function Sum(F1,F2: Taylor1) return Taylor1 is
F3: Taylor1;

begin
F3.R := Min(F1.R,F2.R);
F3.J := Min(F1.K,F2.K);
for N in 0 .. D loop

F3.C(N) := Sum(F1.C(N),F2.C(N));
end loop;
return F3;

end Sum;

Similarly Neg, Diff, Prod, Inv, Sqrt, Exp, Log, Cos, Sin, ArcCos, ArcSin, Norm, Includes, IsZero, Assign, . . .

Similarly for Taylor2 and Fourier1. All can be used again as Scalars !


