Existence and stability of traveling pulse solutions for the FitzHugh-Nagumo equation
 (with G. Arioli)

(1) CAP Examples
(2) The FitzHugh-Nagumo model
(3) New results
(4) Existence of pulse solutions
(5) Stability
(6) Eigenvalues
(7) Some details
(8) More details

Favored problems for computer-assisted proofs

are equations with no free parameters.
Some appear in renormalization, like

The hierarchical model

$$
\boldsymbol{F}^{2} * \text { Gaussian } \equiv \boldsymbol{F} \quad(\bmod \text { scaling })
$$

The Feigenbaum-Cvitanović equation

$$
\boldsymbol{F} \circ \boldsymbol{F} \equiv \boldsymbol{F} \quad \text { (mod scaling })
$$

MacKay's fixed point equation (commuting area-preserving maps)

$$
\left[\begin{array}{c}
\boldsymbol{G} \\
\boldsymbol{F} \circ \boldsymbol{G}
\end{array}\right] \equiv\left[\begin{array}{l}
\boldsymbol{F} \\
\boldsymbol{G}
\end{array}\right] \quad \text { (mod scaling) }
$$

A related equation for Hamiltonians on $\mathbb{T}^{2} \times \mathbb{R}^{2}$

$$
\boldsymbol{H} \circ \text { Nontrivial } \equiv \boldsymbol{H} \quad(\bmod \text { trivial })
$$

Current developments in CAPs

focus on problems that (cannot be solved by hand and) involve

- exploring new areas of application,
- developing new methods,
- testing the boundaries of what is feasible.

Low regularity problems and boundary value problems on nontrivial domains, like

$$
\Delta u=f(u) \quad \text { on } \Omega, \quad f=g \quad \text { on } \partial \Omega
$$

Beginnings by [M.T. Nakao, N. Yamamoto, ... 1995+].
Orbits in dissipative PDEs like Kuramoto-Sivashinsky,

$$
\partial_{t} u+4 \partial_{x}^{4} u+\alpha \partial_{x}^{2} u+2 \alpha u \partial_{x} u=0
$$

Periodic: [P. Zgliczyński 2008-10; G. Arioli, H.K. 2010].
Chaotic: a long term goal.
Existence and stability of waves and patterns.
A good starting point is the Fitzhugh-Nagumo equation in 1 spatial dimension,

$$
\begin{aligned}
& \partial_{t} w_{1}=\partial_{x}^{2} w_{1}+f\left(w_{1}\right)-w_{2}, \\
& \partial_{t} w_{2}=\epsilon\left(w_{1}-\gamma w_{2}\right) .
\end{aligned}
$$

See page 5 .

Plus all the exciting work by

M. Berz, R. Castelli , S. Day , R. de la Llave, D. Gaidashev, M. Gameiro, A. Haro, J.M. James, T. Johnson, S. Kimura, J.P. Lessard, K. Mischaikow, M. Mrozek, M.T. Nako, S. Oishi, M. Plum, S.M. Rump, W. Tucker, J.B. van den Berg, D. Wilczak, N. Yamamoto, P. Zgliczyński, and many others.

Motivation for our current work:
[D. Ambrosi, G. Arioli, F. Nobile, A. Quarteroni 2011] proposed and studied numerically an improved version of the Fitzhugh-Nagumo equation:

$$
\begin{aligned}
\partial_{t}\left(\left(1-\beta w_{1}\right) w_{1}\right) & =\partial_{x}\left(\left(1-\beta w_{1}\right)^{-1} \partial_{x} w_{1}\right)+\left(1-\beta w_{1}\right) f\left(w_{1}\right)-\left(1-\beta w_{1}\right) w_{2} \\
\partial_{t}\left(\left(1-\beta w_{1}\right) w_{2}\right) & =\epsilon\left(1-\beta w_{1}\right)\left(w_{1}-\gamma w_{2}\right)
\end{aligned}
$$

Existence of a pulse solution: proved in [D. Ambrosi, G. Arioli, H.K. 2012]. Stability: ?

The FitzHugh-Nagumo equations in one spatial dimension are

$$
\begin{aligned}
& \partial_{t} w_{1}=\partial_{x}^{2} w_{1}+f\left(w_{1}\right)-w_{2} \\
& \partial_{t} w_{2}=\epsilon\left(w_{1}-\gamma w_{2}\right)
\end{aligned}
$$

with $\epsilon, \gamma \geq 0$ and

$$
f(r)=r(r-a)(1-r), \quad 0<a<\frac{1}{2}
$$

They describe the propagation of electrical signals in biological tissues.
$w_{1}=w_{1}(x, t)$ action potential (voltage difference across cell membrane).
$w_{2}=w_{2}(x, t)$ gate variable (fraction of ion channels that are open, slow recovery).
$\epsilon^{-1} \quad$ recovery time.
We consider both on the circle $\mathbb{S}_{\ell}=\mathbb{R} /(\ell \mathbb{Z})$ with circumference $\ell=128$, and the real line \mathbb{R}.
A pulse traveling with velocity c is a solution $w_{j}(x, t)=\phi_{j}(x-c t)$.
The equation for such a pulse can be written as

$$
\phi^{\prime}=X(\phi), \quad \phi=\left[\begin{array}{l}
\phi_{0} \\
\phi_{1} \\
\phi_{2}
\end{array}\right], \quad X(\phi)=\left[\begin{array}{c}
-c \phi_{0}-f\left(\phi_{1}\right)+\phi_{2} \\
\phi_{0} \\
-c^{-1} \epsilon\left(\phi_{1}-\gamma \phi_{2}\right)
\end{array}\right]
$$

In the case of a pulse on \mathbb{R}, one also imposes the conditions $\phi(\pm \infty)=0$.
So a pulse ϕ corresponds to a homoclinic orbit for X.

For $\epsilon=0$ and any $c>0$ we have $\quad X(\phi)=0 \quad \Longleftrightarrow \quad \phi_{0}=0, \phi_{2}=f\left(\phi_{1}\right)$, with $D X(\phi)$ having no positive eigenvalue at a fixed point ϕ when $f^{\prime}\left(\phi_{1}\right)<0$. For a specific velocity $c>0$ there are "connecting orbits" as shown below.

For $\varepsilon \ll 1$:

Existence of a fast pulse for some $c>0$ by [S. Hastings 1976; G. Carpenter 1977; . .]] and several others.
Stability of the pulse by [C.K.R.T. Jones 1984, E. Yanagida 1985]
using results from [J.W. Evans I-IV 1972-1975]

Consider now more "standard" model values $\quad \epsilon=\frac{1}{100}, \quad \gamma=5, \quad a=\frac{1}{10}$, and $\ell=128$ in the periodic case.

Theorem 1. The $F H N$ equation on $\mathbb{R} \times \mathbb{S}_{\ell}$ has a real analytic and exponentially stable traveling pulse solution with velocity $c=0.470336308 \ldots$

Theorem 2. The $F H N$ equation on $\mathbb{R} \times \mathbb{R}$ has a traveling pulse solution with $c=0.470336270 \ldots$ This solution is real analytic, decreases exponentially at infinity, and is exponentially stable.

Space \mathcal{C} : $\quad w_{1}$ and w_{2} are bounded and uniformly continuous in x. Using the sup-norm.
Domain $\mathcal{C}^{\prime}: ~ w_{1}, \partial_{x} w_{1}, \partial_{x}^{2} w_{1}, w_{2}, \partial_{x} w_{2}$ belong to \mathcal{C}.

We use the notation $\underline{\mathrm{w}}=\left[w_{1} w_{2}\right]^{\top}$ and $w_{j}: t \mapsto w_{j}(t)$ and $w_{j}(t): x \mapsto w_{j}(x, t)$. A pulse solution ϕ is exponentially stable if for any nearby solution $\underline{\mathrm{w}} \in \mathcal{C}^{\prime}$ of FHN , $\underline{\mathrm{w}}(t)$ converges exponentially to some translate of ϕ, as $t \rightarrow \infty$.
The exponential rate is fixed, and other constants only depend on norms.

Steps of the proof

(1) Determine the pulse and its velocity by
(P) formulating and solving an appropriate fixed point problem.
(H) finding c where the stable manifold \mathcal{W}_{c}^{s} of the origin intersects (in fact includes) the unstable manifold \mathcal{W}_{c}^{u}.
(2) Get full exponential stability from linear exponential stability.
(3) Relate linear exponential stability to the spectrum of L_{ϕ} and show that the relevant part of the spectrum is discrete.
(4) Prove bounds that exclude eigenvalues outside a manageable region Ω containing 0 .
(5) Show that L_{ϕ} has non nonzero eigenvalue in Ω by
(P) using perturbation theory about a simpler operator, in a simpler space.
$\left(\mathrm{H}_{1}\right)$ using that such eigenvalues are related to the zeros of the Evans function and $\left(\mathrm{H}_{2}\right)$ estimating the Evans function along $\partial \Omega$.

The fact $\left(5 \mathrm{H}_{1}\right)$ was proved in [J.W. Evans IV] for general "nerve axon equations". Steps $(2 \mathrm{H})$ and $(3 \mathrm{H})$ are proved in [J.W. Evans I-III] but we need (2) and (3).

Existence of the periodic pulse.
Rescale from periodicity ℓ to periodicity 2π. Let $\eta=\ell /(2 \pi)$.
Consider a Banach space \mathcal{F} of functions that are analytic on a strip.
Rewrite the pulse equation as an equation for $\varphi=\phi_{1}(\eta$.$) alone,$

$$
g=\mathcal{N}_{c}(g), \quad g=\mathrm{I}_{0} \varphi=\varphi-\operatorname{average}(\varphi)
$$

where

$$
\mathcal{N}_{c}(g)=\eta^{2}\left(D^{2}-\kappa^{2} \mathrm{I}\right)^{-1}\left(\mathrm{I}-\kappa D^{-1}\right) \mathrm{I}_{0}\left(-f(\varphi)+\epsilon \gamma g+\epsilon c^{-1} \eta D^{-1}[\gamma f(\varphi)-\varphi]\right)
$$

"Eliminate" the eigenvalue 1 using a projection P of rank 1.

$$
\mathcal{N}_{c}^{\prime}(g)=(\mathbf{I}-P) \mathcal{N}_{c}(g), \quad P \mathcal{N}_{c}^{\prime}(g)=0, \quad g \in \mathbf{I}_{0} \mathcal{F}
$$

The fixed point problem for \mathcal{N}_{c}^{\prime} is nonsingular. Now use a quasi-Newton map

$$
\mathcal{M}_{c}(h)=h+\mathcal{N}_{c}^{\prime}\left(p_{0}+A h\right)-\left(p_{0}+A h\right), \quad h \in \mathrm{I}_{0} \mathcal{F}
$$

with p_{0} an approximate fixed point of \mathcal{N}_{c}^{\prime} and A an approximation to $\left[\mathrm{I}-D \mathcal{N}_{c}^{\prime}\left(p_{0}\right)\right]^{-1}$.

Lemma 3. For some $c_{0}=0.4703363082 \ldots$ and $K, r, \varepsilon>0$ satisfying $\varepsilon+K r<r$,

$$
\left\|\mathcal{M}_{c}(0)\right\|<\varepsilon, \quad\left\|D \mathcal{M}_{c}(h)\right\|<K, \quad c \in I, \quad h \in B_{r}(0)
$$

where $I=\left[c_{0}-2^{-60}, c_{0}+2^{-60}\right]$. Furthermore $c \mapsto P \mathcal{N}_{c}^{\prime}\left(p_{0}+A h\right)$ changes sign on I for every $h \in B_{r}(0)$.

Existence of the homoclinic pulse. Solve

$$
\phi^{\prime}=D X(0) \phi+B\left(\phi_{1}\right), \quad D X(0)=\left[\begin{array}{ccc}
-c & a & 1 \\
1 & 0 & 0 \\
0 & -c^{-1} \epsilon & c^{-1} \epsilon \gamma
\end{array}\right]
$$

with $B(0)=0$ and $D B(0)=0$.
For the local stable manifold write $\phi^{s}(y)=\Phi^{s}\left(e^{\mu_{0} y}\right)$, and

$$
\Phi^{s}(r)=\ell^{s}(r)+Z^{s}(r), \quad \ell^{s}(r)=r \mathrm{U}_{0}, \quad Z^{s}(r)=\mathcal{O}\left(r^{2}\right)
$$

where U_{0} is the eigenvector of $D X(0)$ for the eigenvalue μ_{0} that has a negative real part.

$$
Z^{s}=\left[\partial_{y}-D X(0)\right]^{-1} B\left(\ell_{1}^{s}+Z_{1}^{s}\right), \quad \partial_{y}=\mu_{0} r \partial_{r}
$$

This equation can be solved "order by order" in powers of r.
Prolongation from $y=\frac{5}{2}$ backwards in time to $y=-43$ is done via a simple Taylor integrator.
For the local unstable manifold write $\phi^{u}(y)=\Phi^{u}\left(R e^{\nu_{0} y}, R e^{\bar{\nu}_{0} y}\right)$, for some $R>0$, and

$$
\Phi^{u}(s)=\ell^{u}(s)+Z^{u}(s), \quad \ell^{u}(s)=s_{1} \mathrm{~V}_{0}+s_{2} \overline{\mathrm{~V}}_{0}, \quad Z^{u}(s)=\mathcal{O}\left(|s|^{2}\right)
$$

where V_{0} and $\overline{\mathrm{V}}_{0}$ are eigenvectors of $D X(0)$ for the eigenvalues ν_{0} and $\bar{\nu}_{0}$, respectively.

$$
Z^{u}=\left[\partial_{y}-D X(0)\right]^{-1} B\left(\ell_{1}^{u}+Z_{1}^{u}\right), \quad \partial_{y}=\nu_{0} s_{1} \partial_{s_{1}}+\bar{\nu}_{0} s_{2} \partial_{s_{2}}
$$

This equation can be solved "order by order" in powers of s_{1} and s_{2}.

Recall that everything depends on the velocity parameter c.
For the local unstable manifold we use a space \mathcal{A} where

$$
Z_{j}^{u}(c, s)=\sum_{k+m \geq 2} Z_{j, k, m}^{u}(c) s_{1}^{k} s_{2}^{m}, \quad\left\|Z_{j}^{u}\right\|=\sum_{k+m \geq 2}\left\|Z_{j, k, m}^{u}\right\| \rho^{k+m}
$$

The coefficients $Z_{j, k, m}^{u}$ belong to a space \mathcal{B} of functions that are analytic on a disk $\left|c-c_{0}\right|<\varrho$. Similarly for the functions $c \mapsto Z_{j}^{s}(c,-43)$.

The two families of manifolds intersect if the difference

$$
\Upsilon(c, \sigma, \tau)=\Phi^{u}(c, \sigma+i \tau, \sigma-i \tau)-\phi^{s}(c,-43)
$$

vanishes for some real values of c, σ, and τ. Let $\rho=2^{-5}$ and $\varrho=2^{-96}$.

Lemma 4. For some $c_{0}=0.4703362702 \ldots$ the function Υ is well defined and differentiable on the domain $|\sigma+i \tau|<\rho$ and $\left|c-c_{0}\right|<\varrho$. In this domain there exists a cube where Υ has a unique zero, and $\left|c-c_{0}\right|<2^{-172}$ for all points in this cube.

Stable and unstable manifolds.

Reduction to linear stability.

For convenience use moving coordinates $y=x-t c$ and $w_{j}(x, t)=u_{j}(y, t)$, so

$$
\partial_{t} \underline{\mathbf{u}}=\left[\begin{array}{c}
\partial_{y}^{2} u_{1}+c \partial_{y} u_{1}+f\left(u_{1}\right)-u_{2} \\
c \partial_{y} u_{2}+\epsilon\left[u_{1}-\gamma u_{2}\right]
\end{array}\right], \quad \underline{\mathrm{u}}=\left[\begin{array}{l}
u_{1} \\
u_{2}
\end{array}\right] .
$$

The linearization about a traveling pulse $u_{j}(y, t)=\phi_{j}(y)$ is

$$
\partial_{t \underline{\mathrm{v}}}=L_{\phi \underline{\mathrm{V}}}, \quad L_{\phi \underline{\mathrm{v}}}=\left[\begin{array}{cc}
\partial_{y}^{2}+c \partial_{y}+f^{\prime}\left(\phi_{1}\right) & -1 \\
\epsilon & c \partial_{y}-\epsilon \gamma
\end{array}\right] \underline{\mathrm{v}} .
$$

Notice that $\underline{\phi}^{\prime}$ is a stationary point: $L_{\phi} \underline{\phi}^{\prime}=0$.
Write $\underline{\mathrm{v}}(0) \mapsto \underline{\mathrm{v}}(t)$ as $e^{t L_{\phi}}$.
$\underline{\phi}^{\prime}$ is said to be exponentially stable if there exists a continuous linear functional $p: \mathcal{C} \rightarrow \mathbb{R}$, and two constants $C, \omega>0$, such that $\left\|e^{t L_{\phi} \underline{\mathrm{v}}}-p(\underline{\mathrm{v}}) \underline{\phi}^{\prime}\right\| \leq C e^{-t \omega}\|\underline{\mathrm{v}}\|$ for all $\underline{\mathrm{v}} \in \mathcal{C}^{\prime}$ and all $t \geq 0$.

Lemma 5. If $\underline{\phi}^{\prime}$ is exponentially stable for the linear system then $\underline{\phi}$ is exponentially stable for the full system.

Our proof is naturally not far from [J.W. Evans I].
It applies both to the periodic and the homoclinic case (and is short).

Reduction to an eigenvalue problem.
Split $L_{\phi}: \mathcal{C}^{\prime} \rightarrow \mathcal{C}$ as in

$$
L_{\phi}=L_{0}+F, \quad L_{0}=\left[\begin{array}{cc}
D^{2}+c D-\theta & -1 \\
\epsilon & c D-\epsilon \gamma
\end{array}\right], \quad F=\left[\begin{array}{cc}
f^{\prime}\left(\phi_{1}\right)+\theta & 0 \\
0 & 0
\end{array}\right]
$$

where $\theta=-f^{\prime}(0)=-a$, unless specified otherwise.
Proposition 6. L_{0} generates a strongly continuous semigroup on \mathcal{C} that satisfies $\left\|e^{t L_{0}}\right\| \leq C e^{-t \epsilon \gamma}$ for some $C>0$ and all $t \geq 0$.

Proposition 7. F is compact relative to L_{0}. And $F e^{t L_{0}}$ is compact for $t>0$.
Proposition 8. The difference $e^{t\left(L_{0}+F\right)}-e^{t L_{0}}$ is compact for all $t \geq 0$.
Superficially, this follows from bounded $*$ compact=compact and

$$
e^{t\left(L_{0}+F\right)}-e^{t L_{0}}=\int_{0}^{t} e^{(t-s)\left(L_{0}+F\right)} F e^{s L_{0}} d s
$$

But need something like [J. Voigt 1992] for the strong operator topology.
Consider half-planes $\boldsymbol{H}_{\alpha}=\{\boldsymbol{z} \in \mathbb{C}: \operatorname{Re}(z)>-\alpha\}$.
Proposition 9. Assume that L_{ϕ} has no spectrum in H_{α} except for a simple eigenvalue 0 . Denote by P_{\perp} the spectral projection associated with the spectrum of L_{ϕ} in $\mathbb{C} \backslash\{0\}$. Then for every $\omega<\alpha$ there exists a constant $C_{\omega}>0$ such that $\left\|e^{t L_{\phi}} P_{\perp}\right\| \leq C_{\omega}^{-t \omega}$ for all $t \geq 0$.

For eigenvalue bounds use the Hilbert space \mathcal{H},

$$
\langle u, v\rangle=\epsilon^{1 / 2} \int u_{1}(y) \overline{v_{1}(y)} d y+\epsilon^{-1 / 2} \int u_{2}(y) \overline{v_{2}(y)} d y
$$

Fact 10. The spectrum of $L_{0}: \mathcal{H}^{\prime} \rightarrow \mathcal{H}$ consists of \ldots

$$
\begin{aligned}
& \lambda^{-}(p)=-p^{2}+i c p-\theta-\frac{1}{2}\left[\sqrt{\left(p^{2}+\theta-\epsilon \gamma\right)^{2}-4 \epsilon}-\left(p^{2}+\theta-\epsilon \gamma\right)\right] \\
& \lambda^{+}(p)=i c p-\epsilon \gamma+\frac{1}{2}\left[\sqrt{\left(p^{2}+\theta-\epsilon \gamma\right)^{2}-4 \epsilon}-\left(p^{2}+\theta-\epsilon \gamma\right)\right]
\end{aligned}
$$

Proposition 11. If λ is an eigenvalue of $L_{\phi}: \mathcal{H}^{\prime} \rightarrow \mathcal{H}$ then

$$
\operatorname{Re}(\lambda) \leq \Lambda, \quad \Lambda \stackrel{\text { def }}{=} \sup _{r} f^{\prime}(r)=\frac{91}{300}
$$

Proposition 12. For every $\delta>0$ there exists $\omega>0$ such that the following holds. If λ is any eigenvalue of $L_{\phi}: \mathcal{H}^{\prime} \rightarrow \mathcal{H}$, then either $\operatorname{Re}(\lambda)<-\omega$ or else

$$
|\operatorname{Im}(\lambda)| \leq \sqrt{c^{2}+\gamma^{-1}} \Lambda^{1 / 2}+\delta
$$

Using our bounds on c we have $\sqrt{c^{2}+\gamma^{-1}} \Lambda^{1 / 2}<\Theta \stackrel{\text { def }}{=} 0.35745$.

Estimating eigenvalues in the periodic case.

$\mathcal{V} \quad$ Space of 2π-periodic functions that are analytic on a strip; contains all relevant eigenvectors of $L_{\phi}: \mathcal{C}^{\prime} \rightarrow \mathcal{C}$.
$P \quad$ Projection onto low "Fourier modes".
$M, U \quad$ Suitable Fourier-multiplier operators.

$$
M^{-1} L_{\phi} M=\mathcal{L}_{1}, \quad \mathcal{L}_{s}=\mathcal{L}_{0}+s \mathcal{K}, \quad \mathcal{L}_{0}=M^{-1} L_{0} M+P F P
$$

Control first $z \mathrm{I}-\mathcal{L}_{0}$ and then

$$
z \mathrm{I}-\mathcal{L}_{s}=\left[\mathrm{I}-s \mathcal{K}\left(z \mathrm{I}-\mathcal{L}_{0}\right)^{-1}\right]\left(z \mathrm{I}-\mathcal{L}_{0}\right), \quad z \in \Gamma
$$

Estimate the spectral radius of the "green operator", using

$$
U\left[\mathcal{K}\left(z \mathrm{I}-\mathcal{L}_{0}\right)^{-1}\right] U^{-1}=(U \mathcal{K} U)\left[U^{-1}\left(z \mathrm{I}-\mathcal{L}_{0}\right)^{-1} U^{-1}\right] .
$$

Lemma 13. $\mathcal{L}_{0}: \mathcal{V} \rightarrow \mathcal{V}$ has no spectrum in Ω except for a simple eigenvalue. Furthermore, the following bound holds for all $z \in \Gamma$:

$$
\|U \mathcal{K} U\|<\frac{1}{2500}, \quad\left\|U^{-1}\left(z \mathrm{I}-\mathcal{L}_{0}\right)^{-1} U^{-1}\right\|<2500
$$

Estimating eigenvalues in the homoclinic case à la [J.W. Evans IV].
Write $L_{\phi} \underline{\underline{u}}=\lambda \underline{\underline{u}}$ as

$$
u^{\prime}=A_{\phi_{1}}(\lambda) u, \quad A_{\varphi}(z)=\left[\begin{array}{ccc}
-c & -f^{\prime}(\varphi)+z & 1 \\
1 & 0 & 0 \\
0 & -c^{-1} \epsilon & c^{-1}(\epsilon \gamma+z)
\end{array}\right], \quad z \in H_{\alpha}
$$

Need $u \in \mathcal{C}$ and thus bounded; in fact vanishing at $\pm \infty$ since
The matrix $A_{0}(z)$ is hyperbolic. One eigenvalue μ_{z} has negative real part.
First solve

$$
u^{\prime}=A_{\phi_{1}}(z) u, \quad \lim _{y \rightarrow+\infty} u_{z}(y) e^{-y \mu_{z}}=U_{z}, \quad A_{0}(z) \mathrm{U}_{z}=\mu_{z} \mathrm{U}_{z}
$$

As $y \rightarrow-\infty$ the normalized $u_{z}(y)$ must approach the unstable subspace of $A_{0}(z)$ which is perpendicular to the stable subspace of $A_{0}(z)^{\top}$.
Propagate this condition from $-\infty$ to y by solving the adjoint equation

$$
v^{\prime}=-A_{\phi_{1}}(z)^{\top} v, \quad \lim _{y \rightarrow-\infty} v_{z}(y) e^{y \mu_{z}}=\mathrm{V}_{z}, \quad A_{0}(z)^{\top} \mathrm{V}_{z}=\mu_{z} \mathrm{~V}_{z}
$$

Then

$$
\left[v_{z}^{\top} u_{z}\right]^{\prime}=\left[v_{z}^{\prime}\right]^{\top} u_{z}+v_{z}^{\top} u_{z}^{\prime}=\left[-A_{\phi_{1}}(z)^{\top} v_{z}\right]^{\top}+v_{z}^{\top} A_{\phi_{1}}(z) u_{z}^{\prime}=0
$$

So

$$
\Delta(z)=v_{z}(y)^{\top} u_{z}(y) \quad \text { (Evans function) }
$$

is independent of y and vanishes precisely when z is an eigenvalue of L_{ϕ}.

Theorem. [J.W. Evans IV]. Δ is analytic in H_{α} and has a zero of order m at λ if and only if λ is an eigenvalue of L_{ϕ} with algebraic multiplicity m.

Let $r=\frac{2485}{8192}$ and $\theta=\frac{5857}{16384}$. Denote by R the closed rectangle in \mathbb{C} with corners at $\pm i \theta$ and $r \pm i \theta$. Let D be the closed disk in \mathbb{C}, centered at the origin, with radius $\frac{1}{32}$.

Lemma 14. Δ has a simple zero at 0 and no other zeros in D.
The restriction of Δ to the boundary of $R \backslash D$ takes no real values in the interval $[0, \infty)$.
Values of $2^{-31} \Delta$ along the boundary of $R \backslash D$.

Some details: periodic case
For 2π-periodic functions on the strip $|\operatorname{Im}(x)|<\rho$ we use the Banach algebra \mathcal{F},

$$
h(x)=\sum_{k=0}^{\infty} h_{k} \cos (k x)+\sum_{k=1}^{\infty} h_{-k} \sin (k x), \quad\|h\|=\sum_{k=-\infty}^{\infty}\left|h_{k}\right| \cosh (\rho k) .
$$

Convenient for products, antiderivatives; and for estimating operator norms:
Let $\left(e_{1}, e_{2}, \ldots\right)$ be an enumeration of the Fourier modes $c_{k} \cos (k$.$) and s_{k} \sin (k$.$) ,$ with c_{k} and s_{k} chosen in such a way that $\left\|e_{j}\right\|=1$ for all j. Then

$$
\|A\|=\sup _{j}\left\|A e_{j}\right\| \leq \max \left\{\left\|A e_{1}\right\|,\left\|A e_{2}\right\|, \ldots,\left\|A e_{n-1}\right\|,\left\|A E_{n}\right\|\right\},
$$

where $E_{n}=\left\{e_{n}, e_{n+1}, \ldots\right\}$.
This is used with $A=D \mathcal{M}_{c}(h)$ for Lemma 3 and $A=U \mathcal{K} U$ for Lemma 13.
To estimate $U^{-1}(z \mathrm{I}-L)^{-1} U^{-1}$ along Γ for the low-mode (matrix) part $L=P L_{\phi} P$ of \mathcal{L}_{0} we cover Γ with disks $\left|z-z_{j}\right|<\delta_{j}$ with centers $z_{j} \in \Gamma$.
The resolvent matrices $R_{j}=\left(z_{j} \mathrm{I}-L\right)^{-1}$ are computed explicitly (with error estimates, of course) and shown to satisfy $\delta_{j}\left\|R_{j}\right\|<1$. This bound implies that

$$
z \mathrm{I}-L=\left[\mathrm{I}+\left(z-z_{j}\right) R_{j}\right]\left(z_{j} \mathrm{I}-L\right)
$$

is invertible whenever $\left|z-z_{j}\right|<\delta_{j}$. Its inverse is bounded by \ldots

Some details: homoclinic case
The equations for u_{z}, v_{z} are integrated the same way as those for ϕ^{s}, ϕ^{u}. Write

$$
u_{z}(y)=e^{-\left(\mu_{0}-\mu_{z}\right) y} \boldsymbol{U}_{z}\left(e^{\mu_{0} y}\right), \quad v_{z}(y)=e^{-\left(\nu_{0}+\bar{\nu}_{0}+\mu_{z}\right) y} \boldsymbol{V}_{z}\left(R e^{\nu_{0} y}, R e^{\bar{\nu}_{0} y}\right)
$$

and

$$
\begin{array}{ll}
\boldsymbol{U}_{z}(s)=r \mathrm{U}_{z}+\mathfrak{Z}^{s}(z, r), & \mathfrak{Z}_{j}^{s}(z, r)=\sum_{n \geq 2} \mathfrak{Z}_{j, n}^{s}(z) r^{n}, \\
\boldsymbol{V}_{z}(s)=s_{1} s_{2} \mathrm{~V}_{z}+\mathfrak{Z}^{u}(z, s), & \mathfrak{Z}_{j}^{u}(z, s)=\sum_{k+m \geq 3} \mathfrak{Z}_{j, k, m}^{u}(z) s_{1}^{k} s_{2}^{m} .
\end{array}
$$

The resulting equations for \mathfrak{Z}^{s} and \mathfrak{Z}^{u} can again be solved order by order .
The coefficients $\mathfrak{Z}_{j, n}^{s}$ and $\mathfrak{Z}_{j, k, m}^{u}$ belong to a space \mathcal{B} of analytic functions on $\left|z-z_{0}\right|<\varrho$.
As in the case of ϕ^{s}, the resulting curve v_{z} is prolonged backwards in time from $y=\frac{5}{2}$ to $y=-43$. The integration uses Taylor expansions that can be computed order by order .
At the end we evaluate $\Delta(z)=v_{z}(-43)^{\top} u_{z}(-43)$.

Let $\left(X_{k},\|\cdot\|_{k}\right)$ be Banach spaces for $k=0,1,2, \ldots$ and let $(X,\|\cdot\|)$ be the Banach space of all functions $x: \mathbb{N} \rightarrow \bigcup_{k} X_{k}$ with $x(k) \in X_{k}$ for all k and $\|x\|=\sum_{k}\|x(k)\|_{k}$ finite. Denote by P_{n} the projection on X defined by setting $\left(P_{n} x\right)(k)=x(k)$ for $k \leq n$ and $\left(P_{n} x\right)(k)=0$ for $k>n$.
Proposition 15. (order by order) Let Y_{0} be a closed bounded subset of X such that $P_{n} Y_{0} \subset Y_{0}$ for all n, and $P_{0} Y_{0}=\left\{y_{0}\right\}$ for some $y_{0} \in X$. Let $F: Y_{0} \rightarrow Y_{0}$ be continuous, having the property that $P_{n+1} F=P_{n+1} F P_{n}$ for all n. Then F has a unique fixed point $y \in Y_{0}$, and $P_{n} y=P_{n} F^{m}\left(y_{0}\right)$ whenever $n \leq m$.
$\mathbb{S} \quad$ an algebra (commutative Banach algebra with unit). Subspaces \mathbb{S}_{i}.
$\mathbb{F} \quad$ any algebra of functions $f: \mathcal{D} \rightarrow \mathbb{S}$ including the constant functions.
$\mathcal{R}(\mathbb{S}) \quad$ Scalars: the representable subsets of \mathbb{S}. Includes an element Undefined.
$\mathcal{R}(\mathbb{S}, \mathbb{F})$ same, but any ball $\left\{s \in \mathbb{S}_{i}:\|s\| \leq r\right\}$ replaced by $\left\{f \in \mathbb{F}_{i}:\|f\| \leq r\right\}$.
Sum : $\mathcal{R}(\mathbb{S}) \times \mathcal{R}(\mathbb{S}) \rightarrow \mathcal{R}(\mathbb{S})$ such that $s_{1} \in S_{1}$ and $s_{2} \in S_{2}$ implies $s_{1}+s_{2} \in \operatorname{Sum}\left(S_{1}, S_{2}\right)$.
Consider a disk $\mathcal{D}_{r}=\{z \in \mathbb{C}:|z|<r\}$ for some representable $r>0$.
Taylor1s: define a space \mathbb{T}_{r} of analytic functions $f: \mathcal{D}_{r} \rightarrow \mathbb{S}$,
$\mathcal{R}\left(\mathbb{T}_{r}\right)$ consists of all sets

$$
f(z)=\sum_{n=0}^{\infty} c_{n} z^{n}, \quad\|f\|_{\mathbb{T}}=\sum_{n=0}^{\infty}\left\|c_{n}\right\|_{\mathbb{S}} r^{n}, \quad c_{n} \in \mathbb{S}
$$

$$
\mathrm{F}: z \mapsto \sum_{n=0}^{d} \mathrm{C}(n) z^{n}, \quad \mathrm{C}(0 \ldots k-1) \in \mathcal{R}(\mathbb{S}), \quad \mathrm{C}(k \ldots d) \in \mathcal{R}\left(\mathbb{S}, \mathbb{T}_{r}\right)
$$

function Sum(F1,F2: Taylor1) return Taylor1 is
F3: Taylor1;
begin
F3.R := Min(F1.R.F2.R);
F3.J := Min(F1.K,F2.K);
for N in 0 .. D loop
F3.C(N) := Sum(F1.C(N),F2.C(N));
end loop;
return F3;
end Sum;
Similarly Neg, Diff, Prod, Inv, Sqrt, Exp, Log, Cos, Sin, ArcCos, ArcSin, Norm, Includes, IsZero, Assign, ... Similarly for Taylor2 and Fourier1. All can be used again as Scalars!

