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Ginzburg-Landau Equations

Equilibrium states of superconductors (macroscopically) and of the
U(1) Higgs model of particle physics are described by the
Ginzburg-Landau equations:

—ApV = K2(1 - V2 W
cur? A = Im(UV 4 V)

where (W, A) 'R 5 CxRY, d=2,3, Va=V —iA Ay = va.
the covariant derivative and covariant Laplacian, respectively, and
k is the Ginzburg-Landau material constant.
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Origin of Ginzburg-Landau Equations

Superconductivity. W : RY — C is called the order parameter; |V|?
gives the density of (Cooper pairs of) superconducting electrons.
A:RY — RY is the magnetic potential. Im(WV 4W¥) is the
superconducting current.

Particle physics. W and A are the Higgs and U(1) gauge
(electro-magnetic) fields, respectively. (Part of Weinberg - Salam
model of electro-weak interactions/ a standard model.)

Geometrically, A is a connection on the principal U(1)- bundle
R? x U(1), and V, a section of the associated bundle.

Similar equations appear in superfluidity and fractional quantum
Hall effect.
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Quantization of Flux

From now on we let d = 2. Finite energy states (W, A) are
classified by the topological degree
|x|—R> ’

where R > 1. For each such state we have the quantization of
magnetic flux:

v
deg(V) := deg ("U’

/ B = 2mdeg(V) € 27Z,
R2

where B := curl A is the magnetic field associated with the vector
potential A.
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Type | and Il Superconductors

Two types of superconductors:

x < 1/4/2: Type | superconductors, exhibit first-order phase
transitions from the non-superconducting state to the
superconducting state (essentially, all pure metals);

x> 1/4/2: Type Il superconductors, exhibit second-order phase
transitions and the formation of vortex lattices (dirty metals and
alloys).

For k = 1/+/2, Bogomolnyi has shown that the Ginzburg-Landau
equations are equivalent to a pair of first-order equations. Using
this Taubes described completely solutions of a given degree.
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“Radially symmetric” (more precisely, equivariant) solutions:

VM (x) = FM(r)em and  AM(x) = aM(r)V(nb),

where n = integer and (r,#) = polar coordinates of x € R.
deg(W(M) = n e Z. (Berger-Chen)

(W A" = the magnetic n-vortex (superconductors) or
Nielsen-Olesen or Nambu string (the particle physics).
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Vortex Profile

The profiles are exponentially localized:
11— ()| <ce™s, |1 —aD(r)] < e/,

Here £ = coherence length and \ = penetration depth.

k=M\/E.

A

-—

The exponential decay is due to the Higgs mechanism of mass
generation: massless A = massive A, with mg = AL
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Stability /Instability of Vortices

Theorem

1. For Type | superconductors all vortices are stable.

2. For Type Il superconductors, the +1-vortices are stable, while
the n-vortices with |n| > 2, are not.

The statement of Theorem | was conjectured by Jaffe and Taubes
on the basis of numerical observations (Jacobs and Rebbi, ...).
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Abrikosov Vortex Lattice States

A pair (W, A) for which all the physical characteristics
W2, B(x):=curlA(x), J(x):=Im(UV,V¥)

are doubly periodic with respect to a lattice L is called the
Abrikosov (vortex) lattice state.

Vortices and vortex lattices are equivariant solutions for different
subgroups of the group of rigid motions (subgroups of rotations
and lattice translations, respectively).
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Existence of Abrikosov Lattices (High magnetic fields)

Let Heo = k2 be the second critical magnetic field, at which the
normal material becomes superconducting. Define

ke(L) = /2 (1 - ﬁ) (< ).

Theorem
For for every L and b satisfying b|Q2| = 27 and ‘b — /@2| < 1 and

» either b < k2 and k > k(L) or b> K? and Kk < kc(L),

there exists an Abrikosov lattice solution, with one quantum of flux
per cell and with average magnetic field per cell equal to b.

Theorem
If k > 1/\/2 (Type Il superconductors), then the minimum of the
average energy per cell is achieved for the triangular lattice.
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Existence of Abrikosov Lattices (Weak MF)

- Similarly, near the first critical magnetic field, Hc1 (at which the
first vortex enters the superconducting sample), we have the
following result

Theorem (Low magnetic fields)

For every L, n and b > H.1, satisfying b|Q2| = 27 (but close to
Hc1), there exist non-trivial Abrikosov lattice solution, with n
quanta of flux per cell and with average magnetic field per cell = b.
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References

- Aver. magn. field = He = K2,

Existence for b < k2 and K > %: Odeh, Barany - Golubitsky -
Tursky, Dutour, Tzaneteas - IMS

Existence for b < k2 and k > k(L) or b > k2 and Kk < Kk(L):
Tzaneteas - IMS

(kc(L) is a new threshold of the Ginzburg-Landau parameter)
Energy minim. by triangular lattices: Dutour, Tzaneteas - IMS,
using results of Aftalion - Blanc - Nier, Nonnenmacher - Voros.

Finite domains: Almog, Aftalion - Serfaty.

- Aver. magn. field ~ H.;.
Existence: Aydi - Sandier and others (k — oc) and Tzaneteas -
IMS (all K's).
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Time-Dependent Eqns. Superconductivity

In the leading approximation the evolution of a superconductor is
described by the gradient-flow-type equations

(0 4 iP)W = AV + £2(1 — VPV
0(0:A— V) = —curl? A+ Im(WV 4¥),

Re~y > 0, the time-dependent Ginzburg-Landau equations or the
Gorkov-Eliashberg-Schmidt equations. (Earlier versions: Bardeen
and Stephen and Anderson, Luttinger and Werthamer.)

The last equation comes from two Maxwell equations, with —0;E
neglected, (Ampere's and Faraday’s laws) and the relations
J = Js + Jn, where Js = Im(WV 4V), and J, = oE.
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Time-Dependent Eqns. U(1) Higgs Model

The time-dependent U(1) Higgs model is described by
U(1)—Higgs (or Maxwell-Higgs) equations (¢ = 0)
(Or + i)2V = AV 4 12(1 — V)W
(0:A — VO)?A = —cur? A+ Im(WV V),
coupled (covariant) wave equations describing the U(1)-gauge
Higgs model of elementary particle physics.

In what follows we use the temporal gauge ® = 0.
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Stability of Abrikosov Lattices

Let (W, A,) = Abrikosov lattice solution specified by w = (£, b)
and Eq(V, A) = Ginzburg-Landau energy functional

1

Eq(V,A) = 2/Q {yvAwF + (curl A)? + ’f(\wﬁ - 1)2} :

Finite-energy perturbations: perturbations satisfying,

lim (EQ(V,A) —Eo(Vu, Ay)) < 00, fi .
Ql_r:?RZ(Q( ) — ol )) < oo, for some w

Theorem (Tzaneteas - IMS)

Let b =~ Hep (high magnetic fields).
There is y(L) s.t. the Abrikosov vortex lattice solutions are

(i) asymptotically stable if k > % and y(£) > 0;

(ii) unstable otherwise.
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Gamma Function

Let L=r(Z+71Z), r>0,7€C,Im7 >0, and v(7) = v(L).
Then the function ~(7) is invariant under modular group SL(2,Z)
and therefore can be reduced to the Poincaré strip, M*/SL(2,Z),

[

Ret
-1 -05 0 05 1

Symmetries: y(—7) = v(7) and y(1 — 7) = (1)

= critical points at 7 = e/™/2 and T = €/™/3

Work in progress: Estimating (7) and checking the critical points.
So far we have y(e'™/3) > 0
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Stability Definition

The stability is defined w.r.to distance to the infinite-dimensional
manifold of £—lattice solutions

M={T2"u, : g € G},

where T'™ = TEUEETrans T /ot g = (, h, p), is the action of the
symmetry group

G = H*(R%;R) x R? x SO(2)

(semi-direct product) on Abrikosov vortex lattices u, = (V,, Ay).
Here T3*"%°, T/ and T;°" are the gauge transformations,
translations and rotations, i.e.

Tfs;auge : (\U(X), A(X)) — (el"Y(X)\IJ(X)7 A(X) + V'}’(X))
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Central Step in Proof

Consider the hessian, £”(u,), of Ginzburg-Landau energy
functional £(V, A) at a Abrikosov lattice solution u, = (W, Ay).

(Recall that the Ginzburg-Landau equations are the Euler-Lagrange
equations for £.)

Signature of stability/instability is the sign of the lowest eigenvalue
of & (uy,)

— estimate the lowest eigenvalue of £ (u,,) in transversal
direction to M.
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Abrikosov Lattices and Equivariance

Recall: the Abrikosov (vortex) lattice is a pair (W, A) for which all
the physical characteristics

W2, B(x):=curlA(x), J(x):=Im(WV4V¥)

are doubly periodic with respect to a lattice L.

Theorem. (W, A) is an Abrikosov lattice state if and only if it is an
equivariant pair for the group of lattice translations for a lattice L:

TstranSl(\U, A) _ T’iauge(\uj A), Vs € L, (1)

where 75 : R? — R is, in general, a multi-valued differentiable
function, with differences of values at the same point € 27Z.

(1) = Yst(x) = vs(x + t) — 7(x) € 27Z.
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Magnetic Translations

The key point: u, = (V,, Ay,) is equivariant = the Hessian
£"(uy,) commutes with magnetic translations,

Ts — T’%sauge -,-straunsl7
where, recall, Tslf(x) = f(x + s), and
TEE : ((x), a(x)) = (e7Pe(x), a(x) + VA(x));
and s : R?2 — R is a multi-valued differentiable function, satisfying

Ystt(x) = vs(x + t) — v¢(x) € 27Z. (2)

(2) = Ts+t = Ts Tt~
(s — Ts is a unitary repres. of £ on L?(R2;C) x L?(R?;R?).)
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Direct Fibre Integral (Bloch Decomposition)

Since the Hessian operator Sll(uw) commutes with T, it can be
decomposed into the fiber direct integral

b
Ue (uw)U_lz/Q Lyed g

where Q* is the fundamental cell of the reciprocal (dual) lattice,
U:L2(R?%CxR?) — ¢ = ng Hduy is a unitary operator,

(Uv)k(x) = Ze_'kST v(x

sel

(decomposition into the Bloch waves, vi(x) = e** ¢ (x)),
H = {v e L?(Q,CxR?): Tev(x) = e’ks (x), s € basis},
Ly is the restriction of the operator £ (u,) to /.

I.M.Sigal, Texas Analysis and Math Physics Symposium Magnetic Vortices, Abrikosov Lattices, Automorphic Functions



In the leading order in € := v/k2 — b, the ground state energies of
the fiber operators, Ly, are given by

inf L = v (7)€ + O(e3),

where

ORISR (9@
) = 2 B BR) T (de() )

Here 9y (z,7), k € Q, are the modified theta functions, i.e. entire
functions satisfying (y/2%i(at + b) = ki + iko)

ImT

Ii(z +1,7) = €™, (z,7),
19!((2 + 7, 7_) — e—27ribe—7ri7'z—27riz,l9k(Z7 7_).
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Conclusion of Sketch

The relations inf L, = v,(7)e? + O(€3) and

5]
ue (Uw)Ulz/ Lidug

imply
N 2 3
inf& (uy) = k|€n§1;* V(7)€ + O(€).

—_——
v(7)

Hence the Abrikosov lattice is

» linearly stable if v(7) > 0
» linearly unstable if v(7) < 0.
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Conclusions

In the context of superconductivity and particle physics, we
described
> existence and stability of magnetic vortices and vortex lattices

» a new threshold k(7) in the Ginzburg-Landau parameter
appears in the problem of existence of vortex lattices

» while Abrikosov lattice energetics is governed by Abrikosov
function (7), a new automorphic function v(7) emerges
controlling stability of Abrikosov lattices.

We gave some indications how to prove the latter results. While
the proof of existence leads to standard theta functions, the proof
of stability leads to theta functions with characteristics.

Interesting extensions:

» unconventional /high T, supercond.,
» Weinberg - Salam model of electro-weak interactions,
» microscopic/quantum theory.
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Abrikosov Lattice. Experiment
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Thank-you for your attention
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