Capacities in nonlinear PDEs with power nonlinearities

Nguyen Cong Phuc Louisiana State University, USA

LSU

Rice University October 26, 2013

Nguyen Cong Phuc (LSU)

Capacities in nonlinear PDEs

October 25, 2013 1 / 19

Acknowledgements

- Igor E. Verbitsky, University of Missouri-Columbia
- Tuoc Van Phan, University of Tennessee
- National Science Foundation

Introduction: The two model equations

Lane-Emden type:

$$-\Delta_{p}u = u^{q} + \mu, \qquad u \ge 0.$$
$$F_{k}[-u] = u^{q} + \mu, \qquad u \ge 0.$$

Stationary Navier-Stokes:

$$\begin{cases} -\Delta U + U \cdot \nabla U + \nabla P = F, \\ \operatorname{div} U = 0. \end{cases}$$

$$U = (U_1, U_2, \ldots, U_n), \qquad F = (F_1, F_2, \ldots, F_n).$$

- Here μ is a non-negative measure, and q > 0.
- $\Delta_p u := \operatorname{div}(|\nabla u|^{p-2} \nabla u)$ is the *p*-Laplacian, p > 1.

• $F_k[u]$, k = 1, 2, ..., n, is the k-Hessian of u defined by $F_k[u] = \sum k \times k$ principal minors of $D^2 u$.

That is

$$F_k[u] = \sum_{i_1 < \cdots < i_k} \lambda_{i_1} \cdots \lambda_{i_k}$$

where $\lambda_1, \ldots, \lambda_n$ are eigenvalues of $D^2 u$. In particular,

$$F_1[u] = \Delta u, \qquad F_n[u] = \det(D^2 u).$$

Note that

$$\det(\lambda I_n - D^2 u) = \sum_{k=0}^n F_k[-u]\lambda^{n-k}.$$

・ 同下 ・ ヨト ・ ヨト

Capacities

• Bessel capacity: Let $\alpha > 0$ and s > 1.

$$\begin{split} \mathrm{Cap}_{lpha,\,s}(\mathcal{K}) &:= \inf \Big\{ \, \|f\|_{L^s}^s : f \geq 0, \mathbf{G}_{lpha} * f \geq 1 \, \mathrm{on} \, \mathcal{K} \Big\} \ &\simeq \inf\{\|u\|_{W^{lpha,s}(\mathbb{R}^n)}^s : u \in C_0^\infty(\mathbb{R}^n), u \geq 1 \, \mathrm{on} \, \mathcal{K}\}. \end{split}$$

Here

$$\mathbf{G}_{\alpha} = \mathcal{F}^{-1}[(1+|\xi|^2)^{rac{-lpha}{2}}]$$
 (Bessel kernel).

• Riesz capacity: Let $0 < \alpha < n$ and s > 1.

$$\operatorname{cap}_{\alpha,s}(K) := \inf \Big\{ \|f\|_{L^s}^s : f \ge 0, \mathbf{I}_{\alpha} * f \ge 1 \text{ on } K \Big\},\$$

where

$$\mathbf{I}_{\alpha} * f(x) = \int_{\mathbb{R}^n} \frac{f(y)}{|x-y|^{n-\alpha}} dy.$$

• Locally we also have the equivalence: for $\alpha s < n$

$$\operatorname{Cap}_{\alpha, s}(K) \simeq \operatorname{cap}_{\alpha, s}(K), \quad \forall K \subset B_1.$$

Capacities

- Capacity of a ball: $\operatorname{Cap}_{\alpha,s}(B_r) \simeq |B_r|^{1 \alpha s/n}$, $\alpha s < n$, $0 < r \leq 1$.
- Capacity of a general compact set: $\operatorname{Cap}_{\alpha,s}(K) \gtrsim |K|^{1-\alpha s/n}$. This follows from Sobolev Embedding Theorem.

Capacities play an important role in analysis and PDEs. For example, they are used to study:

- pointwise behaviors of Sobolev functions (Luzin type theorem).
- removable singularities of solutions to PDEs.
- Dirichlet problems on arbitrary domains (Wiener's criterion), etc.

We are particularly interested in the following remarkable use of capacity on trace inequalities:

イロト 不得 とくまとう まし

Theorem (Maz'ya-Adams-Dahlberg)

Let $\nu \in M^+(\mathbb{R}^n)$, $\alpha > 0$, and $1 < s < \infty$. Then

$$egin{aligned} &\int_{\mathbb{R}^n} |u|^s d
u \lesssim \|u\|^s_{W^{lpha,s}(\mathbb{R}^n)}, & orall u \in C_0^\infty(\mathbb{R}^n). \ & \& \ & \& \ & \int_{\mathbb{R}^n} (\mathbf{G}_lpha * f)^s d
u \lesssim \int_{\mathbb{R}^n} f^s dx, & orall f \in L^s(\mathbb{R}^n), f \ge 0. \ & \& \ & \& \ &
u(K) \lesssim \operatorname{Cap}_{lpha,s}(K), & orall K \subset \mathbb{R}^n. \end{aligned}$$

Remark: A similar result holds for I_{α} and the Riesz capacity $cap_{\alpha,s}$.

Nguyen Cong Phuc (LSU)

(本間) (本語) (本語) (二語

Quasilinear Lane-Emden type equations

Theorem (P.-Verbitsky, Ann. Math. 2008) Let q > p - 1. Suppose that $\operatorname{supp} \mu \Subset \Omega$ with $\mu \ge 0$. If the equation

$$\begin{cases} -\Delta_{p}u = u^{q} + \mu \text{ in } \Omega, \\ u = 0 \text{ on } \partial\Omega \end{cases}$$
(1)

has a solution then

$$\mu(K) \leq C \operatorname{Cap}_{p,\frac{q}{q-p+1}}(K), \quad \forall K \subset \Omega.$$
(2)

• Conversely, $\exists C_0 = C_0(n, p, q) > 0$ such that if (2) holds with $C \le C_0$ then (1) has a solution.

For p = 2: Adams-Pierre (1991).

• Necessary condition: $\mu \leq C \mathcal{H}_{\infty}^{n-\frac{pq}{q-p+1}}$ (Hausdorff content). But this is far from being sufficient.

• Simple sufficient condition: $\mu = f \in L^{\frac{n(q-p+1)}{pq},\infty}(\Omega)$. This gives the answer to a problem posed Bidaut-Veron in 2002.

• Fefferman-Phong sufficient condition: Let $\mu = \mathit{fdx}$. For some $\epsilon > 0$

$$\int_{B} f^{1+\epsilon} dx \leq C|B|^{1-\frac{(1+\epsilon)pq}{n(q-p+1)}}, \quad \forall \text{ balls } B.$$

Here one checks only over balls, but a small bump $\epsilon > 0$ on f is needed.

Removable Singularities for $-\Delta_p u = u^q$

Theorem (P.-Verbitsky, 2008) Let $E \subset \Omega$ be compact. Then

$$\operatorname{Cap}_{p, \frac{q}{q-p+1}}(E) = 0$$

is necessary and sufficient in order that:

Remark: No information of u near E is needed.

Nguyen Cong Phuc (LSU)

一日、

Hessian Lane-Emden type equations

Theorem (P.-Verbitsky, Ann. Math. 2008)

Let q > k. Suppose $\operatorname{supp} \mu \Subset \Omega$, Ω is uniformly (k - 1)-convex.

$$\mu(K) \leq C \operatorname{Cap}_{2k, \frac{q}{q-k}}(K).$$

(k-1)-convex domain Ω in \mathbb{R}^n : $H_j(\partial \Omega) > 0, j = 1, ..., k-1$; H_j denotes the *j*-mean curvature of $\partial \Omega$.

Removable Singularities: A closed set E is removable for $F_k[-u] = u^q$ iff $\operatorname{Cap}_{2k, \frac{q}{q-k}}(E) = 0.$

Nguyen Cong Phuc (LSU)

Relation to semilinear equation: It is also known that

Likewise, one has

$$F_k[-u] = u^q + \mu \quad \Longleftrightarrow \quad (-\Delta)^k u = u^{q/k} + \mu$$

3

(日) (同) (三) (三)

Stationary Navier-Stokes equations

First, the Cauchy problem for non-stationary N-S equations:

$$u_t + (u \cdot \nabla)u + \nabla p = \Delta u$$
, div $u = 0$, $u(x, 0) = u_0(x)$.

$$u=u(x,t)=(u_1,u_2,\ldots u_n).$$

Time-global existence with *small* initial data:

- T. Kato: $u_0 \in L^n$.
- T. Kato, Cannone, Federbush, Y. Meyer, M. Taylor:

$$u_0 \in L^{n,\infty}, \qquad u_0 \in \mathcal{M}^{p,p}, 1 \leq p \leq n.$$

The Morrey space $\mathcal{M}^{p, p}$ is defined by the norm

$$\|f\|_{\mathcal{M}^{p,p}} = \sup_{B_R} \left(R^{p-n} \int_{B_R} |f|^p dx \right)^{\frac{1}{p}}$$

٠

• Koch-Tataru: $u_0 \in BMO^{-1}$.

$$\|f\|_{BMO^{-1}} = \sup_{B_R} \left(\frac{1}{|B_R|} \int_{B_R} \int_0^{R^2} |e^{t\Delta} f(y)|^2 dt dy \right)^{\frac{1}{2}}.$$
$$(f = \operatorname{div} \vec{F}, \quad \vec{F} \in BMO^n).$$

• Bourgain-Pavlović: III-posedness in $B_{\infty,\infty}^{-1}$.

$$\|f\|_{B^{-1}_{\infty,\infty}} = \sup_{t>0} t^{\frac{1}{2}} \left\| e^{t\Delta} f(\cdot) \right\|_{L^{\infty}}$$

One has the continuous emdeddings: $1 \le p \le n$

$$L^n \subset L^{n,\infty} \subset \mathcal{M}^{p,\,p} \subset BMO^{-1} \subset B^{-1}_{\infty,\,\infty}.$$

Critical spaces:

$$\|f\|_E = \|\lambda f(\lambda \cdot)\|_E, \qquad \forall \lambda > 0.$$

•

Stationary Navier-Stokes:

$$-\Delta U + U \cdot \nabla U + \nabla P = F, \quad \operatorname{div} U = 0.$$
$$U = (U_1, U_2, \dots, U_n), \quad F = (F_1, F_2, \dots, F_n).$$

It is invariant under the scaling

$$(U, P, F) \mapsto (U_{\lambda}, P_{\lambda}, F_{\lambda}),$$

where

$$U_{\lambda} = \lambda U(\lambda \cdot), \quad P_{\lambda} = \lambda^2 P(\lambda \cdot), \quad F_{\lambda} = \lambda^3 F(\lambda \cdot) \quad \forall \lambda > 0.$$

Integral form:

$$U = \Delta^{-1} \mathbb{P} \nabla \cdot (U \otimes U) - \Delta^{-1} \mathbb{P} F, \qquad (3)$$

where

$$\mathbb{P}:=\mathit{Id}-\nabla\Delta^{-1}\nabla\cdot$$

is the Laray projection onto the divergence-free vector fields.

Nguyen Cong Phuc (LSU)

э

< ∃⇒

The role of $\mathcal{M}^{2,2}$: largest Banach space $E \subset L^2_{loc}(\mathbb{R}^n)$ that is invariant under translation and that $\|\lambda U(\lambda \cdot)\|_E = \|U\|_E$.

Thus one is tempted to look for solutions in $\mathcal{M}^{2,\,2}$ under the smallness condition

$$\left\| (-\Delta)^{-1} F \right\|_{\mathcal{M}^{2,2}} \leq \epsilon.$$

However, it seems impossible to prove such existence results under this condition as for $U \in \mathcal{M}^{2,2}$ the matrix $U \otimes U$ would belong to $\mathcal{M}^{1,2}$, but unfortunately the first order Riesz potentials of functions in $\mathcal{M}^{1,2}$ may not even belong to $\mathcal{L}^2_{\text{loc}}(\mathbb{R}^n)$.

The space
$$\mathcal{V}^{1,2}$$
:
$$\mathcal{V}^{1,2}(\mathbb{R}^n) := \{ u \in L^2_{\text{loc}}(\mathbb{R}^n) : \|u\|_{\mathcal{V}^{1,2}(\mathbb{R}^n)} < +\infty \},$$

where

$$\|u\|_{\mathcal{V}^{1,2}(\mathbb{R}^n)} = \sup_{K \subset \mathbb{R}^n} \left[\frac{\int_{\mathcal{K}} u^2 dx}{\operatorname{cap}_{1,2}(K)} \right]^{\frac{1}{2}}.$$

Embeddings:

$$\mathcal{M}^{2+\epsilon,\,2+\epsilon}\subset\mathcal{V}^{1,\,2}\subset\mathcal{M}^{2,\,2},\qquad\forall\epsilon\geq0.\quad\text{for all }t\in\mathbb{R},\ t\in\mathbb{R},\ t\in\mathbb{R}$$

Nguyen Cong Phuc (LSU)

Theorem (Phan-P., Adv. Math. 2013)

There exists a sufficiently small number $\delta_0 > 0$ such that if $\|(-\Delta)^{-1}F\|_{\mathcal{V}^{1,2}} < \delta_0$, then the equation (3) has unique solution U satisfying

$$||U||_{\mathcal{V}^{1,2}} \leq C ||(-\Delta)^{-1}F||_{\mathcal{V}^{1,2}}.$$

Kozono-Yamazaki, 1995: Existence in smaller spaces $\mathcal{M}^{2+\epsilon,2+\epsilon}$.

Key bilinear estimate: Let

$$B(U,V) = \Delta^{-1} \mathbb{P} \nabla \cdot (U \otimes V).$$

One has

$$B:\mathcal{V}^{1,2}\times\mathcal{V}^{1,2}\to\mathcal{V}^{1,2}$$

with

$$\|B(U,V)\|_{\mathcal{V}^{1,2}} \leq C \|U\|_{\mathcal{V}^{1,2}} \|V\|_{\mathcal{V}^{1,2}}.$$

超す イヨト イヨト ニヨ

Stationary Navier-Stokes equations

Stability results: Let $U \in \mathcal{V}^{1,2}$ be the solution of (3) with external force F satisfying

$$\left\|(-\Delta)^{-1}F\right\|_{\mathcal{V}^{1,2}} < \delta_0.$$

Consider the Cauchy problem

$$\begin{cases} \partial_t u + u \cdot \nabla u + \nabla p = \Delta u + F, & \text{ in } \mathbb{R}^n \times [0, \infty), \\ \nabla \cdot u = 0, & \text{ in } \mathbb{R}^n \times [0, \infty), \\ u(0) = u_0, & \text{ in } \mathbb{R}^n, \end{cases}$$
(4)

where $u_0 \in \mathcal{V}^{1,2}$ with $\operatorname{div} u_0 = 0$.

Goal: Show that for u_0 near U there exists a unique time-global solution u(t) of (4) such that as time $t \to \infty$ we have $u(t) \to U$ in some sense.

Stationary Navier-Stokes equations

Theorem (Phan-P., Adv. Math. 2013)

Let $\sigma_0 \in (1/2, 1)$. There exists a number $0 < \delta_1 \le \delta_0$ such that for $||(-\Delta)^{-1}F||_{\mathcal{V}^{1,2}} < \delta_1$, the following results hold: There is a positive number $\epsilon_0 > 0$ such that for every u_0 satisfying $||u_0 - U||_{\mathcal{V}^{1,2}} < \epsilon_0$, there exists uniquely a time-global solution u(x, t) of (4) with the initial condition being understood as

$$\sup_{t>0} t^{\alpha/2} \| (-\Delta)^{\frac{\alpha}{2}} [u(\cdot,t)-u_0] \|_{\mathcal{V}^{1,2}} \le C \| |u_0-U||_{\mathcal{V}^{1,2}}$$

for all $\alpha \in [-1,0]$. Moreover, for every $\sigma \in [0,\sigma_0]$, the solution u enjoys the time-decay estimate

$$\|(-\Delta)^{\frac{\sigma}{2}}[u(\cdot,t)-U]\|_{\mathcal{V}^{1,2}} \leq C t^{\frac{-\sigma}{2}} ||u_0-U||_{\mathcal{V}^{1,2}}.$$
 (5)

• Kozono-Yamazaki, 1995: Stability in (smaller) Morrey spaces.

イロト 不得 とくまとう まし