Capacities in nonlinear PDEs with power nonlinearities

Nguyen Cong Phuc
Louisiana State University, USA

LSU

Rice University
October 26, 2013

Acknowledgements

- Igor E. Verbitsky, University of Missouri-Columbia
- Tuoc Van Phan, University of Tennessee
- National Science Foundation

Introduction: The two model equations

Lane-Emden type:

$$
\begin{array}{ll}
-\Delta_{p} u=u^{q}+\mu, & u \geq 0 . \\
F_{k}[-u]=u^{q}+\mu, & u \geq 0 .
\end{array}
$$

Stationary Navier-Stokes:

$$
\begin{aligned}
\left\{\begin{aligned}
-\Delta U+U \cdot \nabla U+\nabla P & =F \\
\operatorname{div} U & =0 .
\end{aligned}\right. \\
U=\left(U_{1}, U_{2}, \ldots, U_{n}\right), \quad F=\left(F_{1}, F_{2}, \ldots, F_{n}\right) .
\end{aligned}
$$

- Here μ is a non-negative measure, and $q>0$.
- $\Delta_{p} u:=\operatorname{div}\left(|\nabla u|^{p-2} \nabla u\right)$ is the p-Laplacian, $p>1$.
- $F_{k}[u], k=1,2, \ldots, n$, is the k-Hessian of u defined by

$$
F_{k}[u]=\sum k \times k \text { principal minors of } D^{2} u
$$

That is

$$
F_{k}[u]=\sum_{i_{1}<\cdots<i_{k}} \lambda_{i_{1}} \cdots \lambda_{i_{k}}
$$

where $\lambda_{1}, \ldots, \lambda_{n}$ are eigenvalues of $D^{2} u$. In particular,

$$
F_{1}[u]=\Delta u, \quad F_{n}[u]=\operatorname{det}\left(D^{2} u\right) .
$$

Note that

$$
\operatorname{det}\left(\lambda I_{n}-D^{2} u\right)=\sum_{k=0}^{n} F_{k}[-u] \lambda^{n-k}
$$

Capacities

- Bessel capacity: Let $\alpha>0$ and $s>1$.

$$
\begin{aligned}
& \operatorname{Cap}_{\alpha, s}(K):=\inf \left\{\|f\|_{L^{s}}^{s}: f \geq 0, \mathbf{G}_{\alpha} * f \geq 1 \text { on } K\right\} \\
& \quad \simeq \inf \left\{\|u\|_{W^{\alpha, s}\left(\mathbb{R}^{n}\right)}^{s}: u \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right), u \geq 1 \text { on } K\right\}
\end{aligned}
$$

Here

$$
\left.\mathbf{G}_{\alpha}=\mathcal{F}^{-1}\left[\left(1+|\xi|^{2}\right)^{\frac{-\alpha}{2}}\right] \quad \text { (Bessel kernel }\right)
$$

- Riesz capacity: Let $0<\alpha<n$ and $s>1$.

$$
\operatorname{cap}_{\alpha, s}(K):=\inf \left\{\|f\|_{L^{s}}^{s}: f \geq 0, \mathbf{I}_{\alpha} * f \geq 1 \text { on } K\right\}
$$

where

$$
\mathbf{I}_{\alpha} * f(x)=\int_{\mathbb{R}^{n}} \frac{f(y)}{|x-y|^{n-\alpha}} d y
$$

- Locally we also have the equivalence: for $\alpha s<n$

$$
\operatorname{Cap}_{\alpha, s}(K) \simeq \operatorname{cap}_{\alpha, s}(K), \quad \forall K \subset B_{1} .
$$

Capacities

- Capacity of a ball: $\operatorname{Cap}_{\alpha, s}\left(B_{r}\right) \simeq\left|B_{r}\right|^{1-\alpha s / n}, \alpha s<n, 0<r \leq 1$.
- Capacity of a general compact set: $\operatorname{Cap}_{\alpha, s}(K) \gtrsim|K|^{1-\alpha s / n}$. This follows from Sobolev Embedding Theorem.

Capacities play an important role in analysis and PDEs. For example, they are used to study:

- pointwise behaviors of Sobolev functions (Luzin type theorem).
- removable singularities of solutions to PDEs.
- Dirichlet problems on arbitrary domains (Wiener's criterion), etc.

We are particularly interested in the following remarkable use of capacity on trace inequalities:

Theorem (Maz'ya-Adams-Dahlberg)
Let $\nu \in M^{+}\left(\mathbb{R}^{n}\right), \alpha>0$, and $1<s<\infty$. Then

$$
\begin{gathered}
\int_{\mathbb{R}^{n}}|u|^{s} d \nu \lesssim\|u\|_{W^{\alpha, s}\left(\mathbb{R}^{n}\right)}^{s}, \quad \forall u \in C_{0}^{\infty}\left(\mathbb{R}^{n}\right) \\
\Uparrow \\
\int_{\mathbb{R}^{n}}\left(\mathbf{G}_{\alpha} * f\right)^{s} d \nu \lesssim \int_{\mathbb{R}^{n}} f^{s} d x, \quad \forall f \in L^{s}\left(\mathbb{R}^{n}\right), f \geq 0 \\
\Uparrow \\
\nu(K) \lesssim \operatorname{Cap}_{\alpha, s}(K), \quad \forall K \subset \mathbb{R}^{n} .
\end{gathered}
$$

Remark: A similar result holds for \mathbf{I}_{α} and the Riesz capacity $\operatorname{cap}_{\alpha, s}$.

Quasilinear Lane-Emden type equations

Theorem (P.-Verbitsky, Ann. Math. 2008)
Let $q>p-1$. Suppose that $\operatorname{supp} \mu \Subset \Omega$ with $\mu \geq 0$. If the equation

$$
\left\{\begin{align*}
-\Delta_{p} u & =u^{q}+\mu \text { in } \Omega, \tag{1}\\
u & =0 \text { on } \partial \Omega
\end{align*}\right.
$$

has a solution then

$$
\begin{equation*}
\mu(K) \leq C \operatorname{Cap}_{p, \frac{q}{q-p+1}}(K), \quad \forall K \subset \Omega . \tag{2}
\end{equation*}
$$

- Conversely, $\exists C_{0}=C_{0}(n, p, q)>0$ such that if (2) holds with $C \leq C_{0}$ then (1) has a solution.

For $p=2$: Adams-Pierre (1991).

- Necessary condition: $\mu \leq C \mathcal{H}_{\infty}^{n-\frac{p q}{q-p+1}}$ (Hausdorff content). But this is far from being sufficient.
- Simple sufficient condition: $\mu=f \in L^{\frac{n(q-p+1)}{p q}, \infty}(\Omega)$. This gives the answer to a problem posed Bidaut-Veron in 2002.
- Fefferman-Phong sufficient condition: Let $\mu=f d x$. For some $\epsilon>0$

$$
\int_{B} f^{1+\epsilon} d x \leq C|B|^{1-\frac{(1+\epsilon) p q}{n(q-p+1)}}, \quad \forall \text { balls } B .
$$

Here one checks only over balls, but a small bump $\epsilon>0$ on f is needed.

Removable Singularities for $-\Delta_{p} u=u^{q}$

Theorem (P.-Verbitsky, 2008)
Let $E \subset \Omega$ be compact. Then

$$
\operatorname{Cap}_{p, \frac{q}{q-p+1}}(E)=0
$$

is necessary and sufficient in order that:

$$
\begin{gathered}
\left\{\begin{array}{c}
u \in L_{\operatorname{loc}}^{q}(\Omega \backslash E), \quad u \geq 0, \\
-\Delta_{p} u=u^{q} \quad \text { in } \quad \mathcal{D}^{\prime}(\Omega \backslash E) . \\
\Downarrow
\end{array}\right. \\
\left\{\begin{array}{c}
u \in L_{\operatorname{loc}}^{q}(\Omega), \quad u \geq 0, \\
-\Delta_{p} u=u^{q} \quad \text { in } \quad \mathcal{D}^{\prime}(\Omega) .
\end{array}\right.
\end{gathered}
$$

Remark: No information of u near E is needed.

Hessian Lane-Emden type equations

Theorem (P.-Verbitsky, Ann. Math. 2008)
Let $q>k$. Suppose $\operatorname{supp} \mu \Subset \Omega, \Omega$ is uniformly $(k-1)$-convex.

$$
\begin{aligned}
& \left\{\begin{array}{l}
F_{k}[-u]=u^{q}+\mu \text { in } \Omega, \\
u \geq 0 \text { in } \Omega, \\
u=0 \text { on } \partial \Omega .
\end{array}\right. \\
& \text { § } \\
& \mu(K) \leq \operatorname{Cap}_{2 k, \frac{q}{q-k}}(K) .
\end{aligned}
$$

$(k-1)$-convex domain Ω in $\mathbb{R}^{n}: H_{j}(\partial \Omega)>0, j=1, \ldots, k-1 ; H_{j}$ denotes the j-mean curvature of $\partial \Omega$.

Removable Singularities: A closed set E is removable for $F_{k}[-u]=u^{q}$ iff $\operatorname{Cap}_{2 k, \frac{q}{q-k}}(E)=0$.

Relation to semilinear equation: It is also known that

$$
\begin{gathered}
\mu(K) \leq C \operatorname{cap}_{p, \frac{q}{q-p+1}}(K) \\
\hat{\imath} \\
u=\mathbf{I}_{p} *\left(u^{q /(p-1)}\right)+\mathbf{I}_{p} * \mu \quad \text { in } \mathbb{R}^{n} .
\end{gathered}
$$

As $\mathbf{I}_{p}=(-\Delta)^{-p / 2}$, in some sense we have the equivalence

$$
-\Delta_{p} u=u^{q}+\mu \quad \Longleftrightarrow \quad(-\Delta)^{p / 2} u=u^{q /(p-1)}+\mu
$$

Likewise, one has

$$
F_{k}[-u]=u^{q}+\mu \quad \Longleftrightarrow \quad(-\Delta)^{k} u=u^{q / k}+\mu
$$

Stationary Navier-Stokes equations

First, the Cauchy problem for non-stationary N-S equations:

$$
\begin{gathered}
u_{t}+(u \cdot \nabla) u+\nabla p=\Delta u, \quad \operatorname{div} u=0, \quad u(x, 0)=u_{0}(x) . \\
u=u(x, t)=\left(u_{1}, u_{2}, \ldots u_{n}\right) .
\end{gathered}
$$

Time-global existence with small initial data:

- T. Kato: $u_{0} \in L^{n}$.
- T. Kato, Cannone, Federbush, Y. Meyer, M. Taylor:

$$
u_{0} \in L^{n, \infty}, \quad u_{0} \in \mathcal{M}^{p, p}, 1 \leq p \leq n .
$$

The Morrey space $\mathcal{M}^{p, p}$ is defined by the norm

$$
\|f\|_{\mathcal{M}^{p, p}}=\sup _{B_{R}}\left(R^{p-n} \int_{B_{R}}|f|^{p} d x\right)^{\frac{1}{p}}
$$

- Koch-Tataru: $u_{0} \in B M O^{-1}$.

$$
\begin{aligned}
\|f\|_{B M O^{-1}}= & \sup _{B_{R}}\left(\frac{1}{\left|B_{R}\right|} \int_{B_{R}} \int_{0}^{R^{2}}\left|e^{t \Delta} f(y)\right|^{2} d t d y\right)^{\frac{1}{2}} . \\
& \left(f=\operatorname{div} \vec{F}, \quad \vec{F} \in B M O^{n}\right) .
\end{aligned}
$$

- Bourgain-Pavlović: III-posedness in $B_{\infty, \infty}^{-1}$.

$$
\|f\|_{B_{\infty}^{-1}, \infty}=\sup _{t>0} t^{\frac{1}{2}}\left\|e^{t \Delta} f(\cdot)\right\|_{L^{\infty}} .
$$

One has the continuous emdeddings: $1 \leq p \leq n$

$$
L^{n} \subset L^{n, \infty} \subset \mathcal{M}^{p, p} \subset B M O^{-1} \subset B_{\infty, \infty}^{-1}
$$

Critical spaces:

$$
\|f\|_{E}=\|\lambda f(\lambda \cdot)\|_{E}, \quad \forall \lambda>0
$$

Stationary Navier-Stokes:

$$
\begin{gathered}
-\Delta U+U \cdot \nabla U+\nabla P=F, \quad \operatorname{div} U=0 \\
U=\left(U_{1}, U_{2}, \ldots, U_{n}\right), \quad F=\left(F_{1}, F_{2}, \ldots, F_{n}\right) .
\end{gathered}
$$

It is invariant under the scaling

$$
(U, P, F) \mapsto\left(U_{\lambda}, P_{\lambda}, F_{\lambda}\right),
$$

where

$$
U_{\lambda}=\lambda U(\lambda \cdot), \quad P_{\lambda}=\lambda^{2} P(\lambda \cdot), \quad F_{\lambda}=\lambda^{3} F(\lambda \cdot) \quad \forall \lambda>0 .
$$

Integral form:

$$
\begin{equation*}
U=\Delta^{-1} \mathbb{P} \nabla \cdot(U \otimes U)-\Delta^{-1} \mathbb{P} F \tag{3}
\end{equation*}
$$

where

$$
\mathbb{P}:=I d-\nabla \Delta^{-1} \nabla
$$

is the Laray projection onto the divergence-free vector fields.

The role of $\mathcal{M}^{2,2}$: largest Banach space $E \subset L_{\text {loc }}^{2}\left(\mathbb{R}^{n}\right)$ that is invariant under translation and that $\|\lambda U(\lambda \cdot)\|_{E}=\|U\|_{E}$.
Thus one is tempted to look for solutions in $\mathcal{M}^{2,2}$ under the smallness condition

$$
\left\|(-\Delta)^{-1} F\right\|_{\mathcal{M}^{2,2}} \leq \epsilon
$$

However, it seems impossible to prove such existence results under this condition as for $U \in \mathcal{M}^{2,2}$ the matrix $U \otimes U$ would belong to $\mathcal{M}^{1,2}$, but unfortunately the first order Riesz potentials of functions in $\mathcal{M}^{1,2}$ may not even belong to $L_{\mathrm{loc}}^{2}\left(\mathbb{R}^{n}\right)$.

The space $\mathcal{V}^{1,2}$:

$$
\mathcal{V}^{1,2}\left(\mathbb{R}^{n}\right):=\left\{u \in L_{\mathrm{loc}}^{2}\left(\mathbb{R}^{n}\right):\|u\|_{\mathcal{V}^{1,2}\left(\mathbb{R}^{n}\right)}<+\infty\right\}
$$

where

$$
\|u\|_{\mathcal{V}^{1,2}\left(\mathbb{R}^{n}\right)}=\sup _{K \subset \mathbb{R}^{n}}\left[\frac{\int_{K} u^{2} d x}{\operatorname{cap}_{1,2}(K)}\right]^{\frac{1}{2}} .
$$

Embeddings:

$$
\mathcal{M}^{2+\epsilon, 2+\epsilon} \subset \mathcal{V}^{1,2} \subset \mathcal{M}^{2,2}, \quad \forall \epsilon>0
$$

Theorem (Phan-P., Adv. Math. 2013)

There exists a sufficiently small number $\delta_{0}>0$ such that if
$\left\|(-\Delta)^{-1} F\right\|_{\mathcal{V}^{1,2}}<\delta_{0}$, then the equation (3) has unique solution U
satisfying

$$
\|U\|_{\mathcal{V}^{1,2}} \leq C\left\|(-\Delta)^{-1} F\right\|_{\mathcal{V}^{1,2}} .
$$

Kozono-Yamazaki, 1995: Existence in smaller spaces $\mathcal{M}^{2+\epsilon, 2+\epsilon}$.

Key bilinear estimate: Let

$$
B(U, V)=\Delta^{-1} \mathbb{P} \nabla \cdot(U \otimes V)
$$

One has

$$
B: \mathcal{V}^{1,2} \times \mathcal{V}^{1,2} \rightarrow \mathcal{V}^{1,2}
$$

with

$$
\|B(U, V)\|_{\mathcal{V}^{1,2}} \leq C\|U\|_{\mathcal{V}^{1,2}}\|V\|_{\mathcal{V}^{1,2}} .
$$

Stationary Navier-Stokes equations

Stability results:
Let $U \in \mathcal{V}^{1,2}$ be the solution of (3) with external force F satisfying

$$
\left\|(-\Delta)^{-1} F\right\|_{\mathcal{V}^{1,2}}<\delta_{0}
$$

Consider the Cauchy problem

$$
\begin{cases}\partial_{t} u+u \cdot \nabla u+\nabla p=\Delta u+F, & \text { in } \mathbb{R}^{n} \times[0, \infty), \\ \nabla \cdot u=0, & \text { in } \mathbb{R}^{n} \times[0, \infty), \\ u(0)=u_{0}, & \text { in } \mathbb{R}^{n},\end{cases}
$$

where $u_{0} \in \mathcal{V}^{1,2}$ with $\operatorname{div} u_{0}=0$.
Goal: Show that for u_{0} near U there exists a unique time-global solution $u(t)$ of (4) such that as time $t \rightarrow \infty$ we have $u(t) \rightarrow U$ in some sense.

Stationary Navier-Stokes equations

Theorem (Phan-P., Adv. Math. 2013)

Let $\sigma_{0} \in(1 / 2,1)$. There exists a number $0<\delta_{1} \leq \delta_{0}$ such that for $\left\|(-\Delta)^{-1} F\right\|_{\mathcal{V}^{1,2}}<\delta_{1}$, the following results hold:
There is a positive number $\epsilon_{0}>0$ such that for every u_{0} satisfying $\left\|u_{0}-U\right\|_{\mathcal{V}^{1,2}}<\epsilon_{0}$, there exists uniquely a time-global solution $u(x, t)$ of (4) with the initial condition being understood as

$$
\sup _{t>0} t^{\alpha / 2}\left\|(-\Delta)^{\frac{\alpha}{2}}\left[u(\cdot, t)-u_{0}\right]\right\|_{\mathcal{V}^{1,2}} \leq C\left\|u_{0}-U\right\|_{\mathcal{L}^{1,2}}
$$

for all $\alpha \in[-1,0]$. Moreover, for every $\sigma \in\left[0, \sigma_{0}\right]$, the solution u enjoys the time-decay estimate

$$
\begin{equation*}
\left\|(-\Delta)^{\frac{\sigma}{2}}[u(\cdot, t)-U]\right\|_{\mathcal{L}^{1,2}} \leq C t^{\frac{-\sigma}{2}}\left\|u_{0}-U\right\|_{\mathcal{V}^{1,2}} . \tag{5}
\end{equation*}
$$

- Kozono-Yamazaki, 1995: Stability in (smaller) Morrey spaces.

