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Introduction: The two model equations

Lane-Emden type:

−∆pu = uq + µ, u ≥ 0.

Fk [−u] = uq + µ, u ≥ 0.

Stationary Navier-Stokes:

{

−∆U + U · ∇U + ∇P = F ,
divU = 0.

U = (U1, U2, . . . ,Un), F = (F1, F2, . . . ,Fn).

• Here µ is a non-negative measure, and q > 0.
• ∆pu := div(|∇u|p−2∇u) is the p-Laplacian, p > 1.
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• Fk [u], k = 1, 2, . . . , n, is the k-Hessian of u defined by

Fk [u] =
∑

k × k principal minors of D2u.

That is
Fk [u] =

∑

i1<···<ik

λi1 · · ·λik

where λ1, . . . , λn are eigenvalues of D2u. In particular,

F1[u] = ∆u, Fn[u] = det(D2u).

Note that

det(λIn − D2u) =

n
∑

k=0

Fk [−u]λn−k .
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Capacities
• Bessel capacity: Let α > 0 and s > 1.

Capα, s(K ) := inf
{

‖f ‖s
Ls : f ≥ 0,Gα ∗ f ≥ 1 on K

}

≃ inf{‖u‖s
W α,s(Rn) : u ∈ C∞

0 (Rn), u ≥ 1 on K}.

Here
Gα = F−1[(1 + |ξ|2)

−α

2 ] (Bessel kernel).

• Riesz capacity: Let 0 < α < n and s > 1.

capα, s(K ) := inf
{

‖f ‖s
Ls : f ≥ 0, Iα ∗ f ≥ 1 on K

}

,

where

Iα ∗ f (x) =

ˆ

Rn

f (y)

|x − y |n−α
dy .

• Locally we also have the equivalence: for αs < n

Capα, s(K ) ≃ capα, s(K ), ∀K ⊂ B1.
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Capacities

• Capacity of a ball: Capα, s(Br ) ≃ |Br |1−αs/n, αs < n, 0 < r ≤ 1.

• Capacity of a general compact set: Capα, s(K ) & |K |1−αs/n. This
follows from Sobolev Embedding Theorem.

Capacities play an important role in analysis and PDEs. For example, they
are used to study:

• pointwise behaviors of Sobolev functions (Luzin type theorem).
• removable singularities of solutions to PDEs.
• Dirichlet problems on arbitrary domains (Wiener’s criterion), etc.

We are particularly interested in the following remarkable use of capacity
on trace inequalities:
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Theorem (Maz’ya-Adams-Dahlberg)

Let ν ∈ M+(Rn), α > 0, and 1 < s < ∞. Then

ˆ

Rn

|u|sdν . ‖u‖s
W α,s(Rn) , ∀u ∈ C∞

0 (Rn).

m
ˆ

Rn

(Gα ∗ f )sdν .

ˆ

Rn

f sdx , ∀f ∈ Ls(Rn), f ≥ 0.

m

ν(K ) . Capα,s(K ), ∀K ⊂ R
n.

Remark: A similar result holds for Iα and the Riesz capacity capα,s .
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Quasilinear Lane-Emden type equations

Theorem (P.-Verbitsky, Ann. Math. 2008)

Let q > p − 1. Suppose that suppµ ⋐ Ω with µ ≥ 0. If the equation

{

−∆pu = uq + µ in Ω,
u = 0 on ∂Ω

(1)

has a solution then

µ(K ) ≤ C Capp, q
q−p+1

(K ), ∀K ⊂ Ω. (2)

• Conversely, ∃ C0 = C0(n, p, q) > 0 such that if (2) holds with C ≤ C0

then (1) has a solution.

For p = 2: Adams-Pierre (1991).
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• Necessary condition: µ ≤ C H
n−

pq
q−p+1

∞ (Hausdorff content). But this is
far from being sufficient.

• Simple sufficient condition: µ = f ∈ L
n(q−p+1)

pq
,∞

(Ω). This gives the
answer to a problem posed Bidaut-Veron in 2002.

• Fefferman-Phong sufficient condition: Let µ = fdx . For some ǫ > 0

ˆ

B

f 1+ǫdx ≤ C |B|
1−

(1+ǫ)pq

n(q−p+1) , ∀balls B.

Here one checks only over balls, but a small bump ǫ > 0 on f is needed.

Nguyen Cong Phuc (LSU) Capacities in nonlinear PDEs October 25, 2013 9 / 19



Removable Singularities for −∆pu = u
q

Theorem (P.-Verbitsky, 2008)

Let E ⊂ Ω be compact. Then

Capp, q
q−p+1

(E ) = 0

is necessary and sufficient in order that:

{

u ∈ L
q
loc

(Ω \ E ), u ≥ 0,
−∆pu = uq in D′(Ω \ E ).

⇓
{

u ∈ L
q
loc

(Ω), u ≥ 0,
−∆pu = uq in D′(Ω).

Remark: No information of u near E is needed.
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Hessian Lane-Emden type equations

Theorem (P.-Verbitsky, Ann. Math. 2008)

Let q > k. Suppose suppµ ⋐ Ω, Ω is uniformly (k − 1)-convex.







Fk [−u] = uq + µ in Ω,
u ≥ 0 in Ω,
u = 0 on ∂Ω.

m

µ(K ) ≤ CCap2k, q
q−k

(K ).

(k − 1)-convex domain Ω in R
n: Hj(∂Ω) > 0, j = 1, . . . , k − 1; Hj denotes

the j-mean curvature of ∂Ω.

Removable Singularities: A closed set E is removable for Fk [−u] = uq iff
Cap2k, q

q−k
(E ) = 0.
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Relation to semilinear equation: It is also known that

µ(K ) ≤ C capp, q
q−p+1

(K )

m

u = Ip ∗ (uq/(p−1)) + Ip ∗ µ in R
n.

As Ip = (−∆)−p/2, in some sense we have the equivalence

−∆pu = uq + µ ⇐⇒ (−∆)p/2u = uq/(p−1) + µ

Likewise, one has

Fk [−u] = uq + µ ⇐⇒ (−∆)ku = uq/k + µ

Nguyen Cong Phuc (LSU) Capacities in nonlinear PDEs October 25, 2013 12 / 19



Stationary Navier-Stokes equations

First, the Cauchy problem for non-stationary N-S equations:

ut + (u · ∇)u + ∇p = ∆u, div u = 0, u(x , 0) = u0(x).

u = u(x , t) = (u1, u2, . . . un).

Time-global existence with small initial data:

T. Kato: u0 ∈ Ln.

T. Kato, Cannone, Federbush, Y. Meyer, M. Taylor:

u0 ∈ Ln,∞, u0 ∈ Mp, p, 1 ≤ p ≤ n.

The Morrey space Mp, p is defined by the norm

‖f ‖
Mp, p = sup

BR

(

Rp−n

ˆ

BR

|f |pdx

)
1
p

.
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Koch-Tataru: u0 ∈ BMO−1.

‖f ‖BMO−1 = sup
BR

(

1

|BR |

ˆ

BR

ˆ R2

0
|et∆f (y)|2dtdy

)
1
2

.

(f = div~F , ~F ∈ BMOn).

Bourgain-Pavlović: Ill-posedness in B−1
∞,∞.

‖f ‖
B−1
∞, ∞

= sup
t>0

t
1
2

∥

∥

∥
et∆f (·)

∥

∥

∥

L∞

.

One has the continuous emdeddings: 1 ≤ p ≤ n

Ln ⊂ Ln,∞ ⊂ Mp, p ⊂ BMO−1 ⊂ B−1
∞,∞.

Critical spaces:
‖f ‖E = ‖λf (λ·)‖E , ∀λ > 0.
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Stationary Navier-Stokes:

−∆U + U · ∇U + ∇P = F , divU = 0.

U = (U1, U2, . . . ,Un), F = (F1, F2, . . . ,Fn).

It is invariant under the scaling

(U, P, F ) 7→ (Uλ, Pλ, Fλ),

where

Uλ = λU(λ·), Pλ = λ2P(λ·), Fλ = λ3F (λ·) ∀λ > 0.

Integral form:
U = ∆−1

P∇ · (U ⊗ U) − ∆−1
PF , (3)

where
P := Id −∇∆−1∇·

is the Laray projection onto the divergence-free vector fields.
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The role of M2, 2: largest Banach space E ⊂ L2
loc

(Rn) that is invariant
under translation and that ‖λU(λ·)‖E = ‖U‖E .
Thus one is tempted to look for solutions in M2, 2 under the smallness
condition

∥

∥(−∆)−1F
∥

∥

M2, 2 ≤ ǫ.

However, it seems impossible to prove such existence results under this
condition as for U ∈ M2, 2 the matrix U ⊗ U would belong to M1, 2, but
unfortunately the first order Riesz potentials of functions in M1, 2 may not
even belong to L2

loc
(Rn).

The space V1, 2:

V1, 2(Rn) := {u ∈ L2
loc

(Rn) : ‖u‖
V1, 2(Rn) < +∞},

where

‖u‖
V1, 2(Rn) = sup

K⊂Rn

[

´

K
u2dx

cap1, 2(K )

]
1
2

.

Embeddings:

M2+ǫ, 2+ǫ ⊂ V1, 2 ⊂ M2, 2, ∀ǫ > 0.
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Theorem (Phan-P., Adv. Math. 2013)

There exists a sufficiently small number δ0 > 0 such that if
∥

∥(−∆)−1F
∥

∥

V1, 2 < δ0, then the equation (3) has unique solution U

satisfying

||U||V1, 2 ≤ C
∥

∥(−∆)−1F
∥

∥

V1, 2 .

Kozono-Yamazaki, 1995: Existence in smaller spaces M2+ǫ, 2+ǫ.

Key bilinear estimate: Let

B(U, V ) = ∆−1
P∇ · (U ⊗ V ).

One has
B : V1, 2 × V1, 2 → V1, 2

with
‖B(U, V )‖

V1, 2 ≤ C ‖U‖
V1, 2 ‖V ‖

V1, 2 .
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Stationary Navier-Stokes equations

Stability results:
Let U ∈ V1, 2 be the solution of (3) with external force F satisfying

∥

∥(−∆)−1F
∥

∥

V1, 2 < δ0.

Consider the Cauchy problem











∂tu + u · ∇u + ∇p = ∆u + F , in R
n × [0,∞),

∇ · u = 0, in R
n × [0,∞),

u(0) = u0, in R
n,

(4)

where u0 ∈ V1, 2 with divu0 = 0.
Goal: Show that for u0 near U there exists a unique time-global solution
u(t) of (4) such that as time t → ∞ we have u(t) → U in some sense.
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Stationary Navier-Stokes equations

Theorem (Phan-P., Adv. Math. 2013)

Let σ0 ∈ (1/2, 1). There exists a number 0 < δ1 ≤ δ0 such that for

||(−∆)−1F ||V1, 2 < δ1, the following results hold:

There is a positive number ǫ0 > 0 such that for every u0 satisfying

||u0 − U||V1, 2 < ǫ0, there exists uniquely a time-global solution u(x , t) of

(4) with the initial condition being understood as

sup
t>0

tα/2‖(−∆)
α

2 [u(·, t) − u0]‖V1, 2 ≤ C ||u0 − U||V1, 2

for all α ∈ [−1, 0]. Moreover, for every σ ∈ [0, σ0], the solution u enjoys

the time-decay estimate

‖(−∆)
σ

2 [u(·, t) − U]‖V1, 2 ≤ C t
−σ

2 ||u0 − U||V1, 2 . (5)

• Kozono-Yamazaki, 1995: Stability in (smaller) Morrey spaces.
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