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Introduction – The Schrödinger equation

By spectral theory the solutione−itHψ of the time-dependent Schrödinger equation

i
∂

∂t
Ψ = HΨ , Ψ|t=0 = ψ

with H self-adjoint satisfies ∥e−itHψ∥ = ∥ψ∥ for all t ∈ R.
Here we are interested in the phenomenon of dispersion.

Example: H = −∆ in L2(Rd) and ψ(x) = (πσ2)−d/4eip·xe−x2/2σ2

. Then

∣∣(eit∆ψ) (x)∣∣2 =

(
σ2

π(σ4 + 4t2)

)d/2

e−σ2(x−2tp)2/(σ4+4t2) .

Dispersion is quantified by Strichartz inequalities. Simplest form:∫
R

∫
Rd

∣∣(eit∆ψ) (x)∣∣2(d+2)/d
dx dt ≤ Cd

(∫
Rd

|ψ(x)|2 dx
)(d+2)/d

.

Due to Strichartz (1977); see also Lindblad–Sogge, Ginibre–Velo, Keel–Tao,
Foschi, . . .
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Goal – A Strichartz inequality for orthonormal functions

Is there an inequality for∫
R

∫
Rd

(∑
j

∣∣(eit∆ψj

)
(x)

∣∣2)(d+2)/d

dx dt

with ψj orthonormal in L2(Rd)?

Obvious answer: By triangle inequality (without using orthogonality!)∫
R

∫
Rd

(∑N

j=1

∣∣(eit∆ψj

)
(x)

∣∣2)(d+2)/d

dx dt ≤ Cd N
(d+2)/d

Can we do better than that?

Main result: Yes, we can!∫
R

∫
Rd

(∑N

j=1

∣∣(eit∆ψj

)
(x)

∣∣2)(d+2)/d

dx dt ≤ C ′
d N

(d+1)/d

And this is best possible!
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Compare with Lieb–Thirring inequalities

The Sobolev interpolation inequality says that for γ ≥ 1 (and more)∫
Rd

|∇ψ|2 dx ≥ Sd,γ

(∫
Rd

|ψ|2 dx
)− γ−1

d/2
(∫

Rd

|ψ|
2(γ+d/2)
γ+d/2−1 dx

) γ+d/2−1
d/2

.

This was generalized by Lieb–Thirring (1976) to orthonormal functions ψj

∑N

j=1

∫
Rd

|∇ψj |2 dx ≥ Kd,γN
− γ−1

d/2

∫
Rd

(∑N

j=1
|ψj |2

) γ+d/2
γ+d/2−1

dx


γ+d/2−1

d/2

.

This is better than N− γ
d/2 (from triangle inequality) and optimal in the semi-classical

limit. Case γ = 1 is used in the Lieb–Thirring proof of stability of matter.

Slightly more precise version: for any operator Γ ≥ 0 on L2(Rd),

Tr(−∆)Γ ≥ Kd,γ

(
TrΓ

γ
γ−1

)− γ−1
d/2

(∫
Rd

Γ(x, x)
γ+d/2

γ+d/2−1 dx

) γ+d/2−1
d/2

.
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‘Semi-classical’ intuition behind Strichartz

Why is

∫∫ (∑N

j=1

∣∣(eit∆ψj

)
(x)

∣∣2)(2+d)/d

dx dt ≤ C ′
d N

(d+1)/d best possible?

Heuristics: At t = 0 considerN electrons in a box of size L with const. density ρ = L−dN .
For |t| ≥ T the electrons have (approximately) disjoint supports and therefore∫∫

|t|≥T

(∑N

j=1

∣∣(eit∆ψj

)
(x)

∣∣2)(2+d)/d

dx dt ≈ N ≪ N (d+1)/d .

We think of T as the typical time it takes an electron to move a distance comparable
with the size of the system. By Thomas–Fermi theory the expected momentum per
particle is ≈ ρ1/d and therefore, if the electrons move ballistically T ≈ Lρ−1/d. Thus,∫∫

|t|≤T

(∑N

j=1

∣∣(eit∆ψj

)
(x)

∣∣2)(2+d)/d

dx dt ≈ TLdρ(2+d)/d ≈ N (d+1)/d .
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The main result

Theorem 1. Let d ≥ 1 and assume that 1 < p, q <∞ satisfy

1 < q ≤ 1 +
2

d
and

2

p
+
d

q
= d .

Then, for any orthonormal ψj and any nj ∈ C

∫
R

(∫
Rd

∣∣∣∣∑j
nj

∣∣(eit∆ψj

)
(x)

∣∣2 ∣∣∣∣q dx)
p
q

dt ≤ Cp
d,q

(∑
j
|nj |

2q
q+1

)p(q+1)
2q

. (1)

that is, with the notations γ(t) = eit∆γe−it∆ and ργ(x) = γ(x, x),∥∥ργ(t)∥∥Lp
t (R,L

q
x(Rd))

≤ Cd,q ∥γ∥
S

2q
q+1

.

This is best possible in the sense that

sup
γ

∥∥ργ(t)∥∥Lp
t (R,L

q
x(Rd))

∥γ∥Sr

= ∞ if r >
2q

q + 1
.
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Remarks

Recall ∥∥ργ(t)∥∥Lp
t (R,L

q
x(Rd))

≤ Cd,q ∥γ∥
S

2q
q+1

if 1 < q ≤ 1 +
2

d
.

Remarks. (1) The inequality with the trace norm ∥γ∥S1 on the right side is known,
even for the full range 1 ≤ p, q ≤ ∞ with (p, q, d) ̸= (1,∞, 2) (plus scaling condition).
(2) This implies an inhomogeneous Strichartz inequality: if

iγ̇(t) = [−∆, γ(t)] + iR(t) , γ(t0) = 0 ,

with R(t) self-adjoint, then for q as in our theorem

∥∥ργ(t)∥∥Lp
t (R,L

q
x(Rd))

≤ C

∥∥∥∥∫
R
e−is∆|R(s)|eis∆ ds

∥∥∥∥
S

2q
q+1

.

(3) We prove that the inequality fails for q ≥ (d + 1)/(d − 1). How about the range
1 + 2/d < q < (d+ 1)/(d− 1)?
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A new result

The following solves the endpoint case. This is joint work with J. Sabin.

Theorem 2. Let d ≥ 1, q = (d + 1)/(d − 1) and p = (d + 1)/d. Then, with the
notations γ(t) = eit∆γe−it∆ and ργ(x) = γ(x, x),∥∥ργ(t)∥∥Lp

t (R,L
q
x(Rd))

≤ C ′
d ∥γ∥

S
2q

q+1
,1 .

Note the Lorentz-1 norm (dual of weak norm) on the right side!
Via real interpolation, we get the full result.

Corollary 3. Let d ≥ 1 and assume that 1 < p, q <∞ satisfy

1 < q <
d+ 1

d− 1
and

2

p
+
d

q
= d .

Then, ∥∥ργ(t)∥∥Lp
t (R,L

q
x(Rd))

≤ Cd,q ∥γ∥
S

2q
q+1

.
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The dual formulation

Using Hölder’s inequality (for operators and for functions) and the fact that∫∫
R×Rd

V (t, x)ργ(t)(x) dx dt = Tr γ

∫
R
e−it∆V (t, ·)eit∆ dt

we see that Theorem 1 is equivalent to

Theorem 4. Let d ≥ 1 and assume that 1 < p′, q′ <∞ satisfy

1 +
d

2
≤ q′ <∞ and

2

p′
+
d

q′
= 2.

Then, with the same constant as in Theorem 1,∥∥∥∥∫
R
e−it∆V (t, ·)eit∆ dt

∥∥∥∥
S2q′

≤ Cd,q ∥V ∥
Lp′

t (R,Lq′
x (Rd))

.

By interpolation it suffices to prove this for q′ = p′ = 1 + d/2.
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Proof of Theorem 2
For V ≥ 0,∥∥∥∥∫

R
e−it∆V (t, ·)eit∆ dt

∥∥∥∥d+2

Sd+2

= Tr

(∫
R
e−it∆V (t, ·)eit∆ dt

)d+2

=

∫
R
· · ·

∫
R
TrV (t1, x+ 2t1p) · · ·V (td+2, x+ 2td+2p) dtd+2 · · · dt1

Here we use the notation

f(x+ 2tp) = e−it∆f(x)eit∆ .

Lemma 5 (Generalized Kato–Simon–Seiler ineq.). For α, β, γ, δ ∈ R and r ≥ 2,

∥f(αx+ βp) g(γx+ δp)∥Sr ≤
∥f∥Lr(Rd) ∥g∥Lr(Rd)

(2π)
d
r |αδ − βγ| dr

.

Thus,∣∣∣Tr(V (t1, x+ 2t1p) · · ·V (td+2, x+ 2td+2p)
)∣∣∣ ≤ ∥V (t1, ·)∥L1+d/2

x
· · · ∥V (td+2, ·)∥L1+d/2

x

(4π)d |t1 − t2|
d

d+2 · · · |td+2 − t1|
d

d+2
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Proof of Theorem 2, cont’d
We have shown that∥∥∥∥∫

R
e−it∆V (t, ·)eit∆ dt

∥∥∥∥d+2

Sd+2

≤
∫
R
· · ·

∫
R

∥V (t1, ·)∥L1+d/2
x

· · · ∥V (td+2, ·)∥L1+d/2
x

(4π)d |t1 − t2|
d

d+2 · · · |td+2 − t1|
d

d+2

dtd+2 · · · dt1

Lemma 6 (Multi-linear HLS inequality; Christ, Beckner). Assume that
(βij)1≤i,j≤N and (rk)1≤k≤N are real-numbers such that

βii = 0, 0 ≤ βij = βji < 1, rk > 1,

N∑
k=1

1

rk
> 1,

N∑
i=1

βik =
2(rk − 1)

rk
.

Then
∣∣∣∣∣
∫
R
· · ·

∫
R

f1(t1) · · · fN (tN )∏
i<j |ti − tj |βij

dtN · · · dt1

∣∣∣∣∣ ≤ C
N∏

k=1

∥fk∥Lrk (R) .

For us, N = d+ 2, βij = δj,i+1d/(d+ 2) and rk = 1 + d/2 and thus∥∥∥∥∫
R
e−it∆V (t, ·)eit∆ dt

∥∥∥∥d+2

Sd+2

≤ C∥V ∥d+2

L
1+d/2
t,x

.
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An application

Consider the unitary propagator UV (t, t0) satisfying

i
∂

∂t
UV (t, t0) =

(
−∆+ V (t, x)

)
UV (t, t0) , UV (t0, t0) = 1 ,

and the wave operator

WV (t, t0) := U0(t0, t)UV (t, t0) = ei(t0−t)∆UV (t, t0) . (2)

The wave operator can be formally expanded in a Dyson series.

Theorem 7. Let d ≥ 1 and assume that 1 < p′, q′ <∞ satisfy

1 +
d

2
≤ q′ <∞ and

2

p′
+
d

q′
= 2 .

If V ∈ Lp′

t (R, Lq′

x (Rd)), then limt→±∞ WV (t, t0) − 1 ∈ S2q′ and the Dyson series
converges in S2q′ .

Improves parts of results of Howland, Yajima, Jensen, . . .
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THANK YOU FOR YOUR ATTENTION!
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