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INTRODUCTION — THE SCHRODINGER EQUATION

By spectral theory the solutione =) of the time-dependent Schrédinger equation

0
with H self-adjoint satisfies ||e= 4| = ||¢)|| for all t € R.

Here we are interested in the phenomenon of dispersion.
Example: H = —A in L2(R%) and ¢(z) = (m02)~¥/4ePTe=7"/29"  Then

itA 2 _ 0’ i —o?(z—2tp)?/ (ot +4t?)
‘(6 ¥) (.:1:)’ ~ \7(o* 1 42) € :

Dispersion is quantified by Strichartz inequalities. Simplest form:

/R/Rd ’(eitAw) (:1;)‘2(d+2)/d dx dt < Cy (/Rd (2)|? da

Due to Strichartz (1977); see also Lindblad—Sogge, Ginibre—Velo, Keel-Tao,
Foschi, . ..

) (d+2)/d
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(GOAL — A STRICHARTZ INEQUALITY FOR ORTHONORMAL FUNCTIONS

Is there an inequality for

(d+2)/d
[ e @) dea

with ¢, orthonormal in L?(R%)?

Obvious answer: By triangle inequality (without using orthogonality!)

N A 9 (d+2)/d o
/R/Rd (ijl (€% 1by) (2)] ) dz dt < C,; N@+2)/

Can we do better than that?

Main result: Yes, we can!

/R/Rd (Z;V:l (2 ;) (93)\2> (d+2)/d

And this is best possible!

dz dt < ¢!y Ntd+1)/d
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COMPARE WITH LIEB—THIRRING INEQUALITIES

The Sobolev interpolation inequality says that for v > 1 (and more)

—1 ~y+d/2—1

_’ZlW 2(y 2 d/2
/ V2 de > Sy (/ Wdaz) (/ Mikecrs: d:c)
Rd Rd Rd

This was generalized by Lieb—Thirring (1976) to orthonormal functions 1,

y+d/2—1
y+d/2 d/2

N vy—1 N ’7+d/2_1
|2 d/2 |2
E jzlfRd‘v%‘ de > Kg~ N 4 /Rd(E j:1‘¢3| ) dz

This is better than N~ @72 (from triangle inequality) and optimal in the semi-classical
limit. Case v =1 is used in the Lieb—Thirring proof of stability of matter.

Slightly more precise version: for any operator I' > 0 on L?(R%),

yt+d/2—1

~ _a=1 ~ / d/2
Tr(-A)' > K4 5 (Tr Fﬁ) v (/ F(:l:,x)”wﬁl dx)
R4
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‘SEMI-CLASSICAL’ INTUITION BEHIND STRICHARTZ

(2+d)/d
) dz dt < C; N4T1/d pest possible?

why is [ (), 120

Heuristics: Att = 0 consider IV electrons in a box of size L with const. density p = L~¢N.
For |t| > T the electrons have (approximately) disjoint supports and therefore

N . 5 (2+d)/d
// (Z 1 ’(@Ztij) (Jj)‘ ) drdt ~ N < N(d—I-l)/d .
t| =T 1=

We think of 1" as the typical time it takes an electron to move a distance comparable
with the size of the system. By Thomas—Fermi theory the expected momentum per
particle is &~ p'/¢ and therefore, if the electrons move ballistically 7'~ Lp~'/¢. Thus,

], (Sl

(24d)/d
) dx dt ~ TLdp(2+d)/d ~ NdtD/d.
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THE MAIN RESULT

Theorem 1. Let d > 1 and assume that 1 < p,q < oo satisfy

2 d

2
l1<g<1l4+- and -+ -=d.
d P q

Then, for any orthonormal ; and any n; € C

(L

that is, with the notations vy(t) =

ESHAS]

Zjnj (&8 ()|

|yl p @ pomayy < Caa VIl 20,
This 1s best possible in the sense that
1ovo) || o 1o y
sup YONLP®RLERD) ifr> L 7
v 7|~ q+1
# 6
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REMARKS

Recall

. 2
<qu|\’y\| |f1<q§1—|—g.

Remarks. (1) The inequality with the trace norm ||y|/g: on the right side is known,
even for the full range 1 < p,q < oo with (p, q,d) # (1,00,2) (plus scaling condition).
(2) This implies an inhomogeneous Strichartz inequality: if

ry(t) = [-A, @) +iR(t),  ~(to) =0,

with R(t) self-adjoint, then for ¢ as in our theorem

/ —zsA‘R(S”eisA ds
R

(3) We prove that the inequality fails for ¢ > (d + 1)/(d — 1). How about the range
1+2/d<qg<(d+1)/(d—1)7

|t HLP(R L3 (R%))

2q

<C'
S ag+1

e HLP(R LI (R4))
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A NEW RESULT

The following solves the endpoint case. This is joint work with J. Sabin.

Theorem 2. Letd > 1, g =(d+1)/(d—1) and p = (d + 1)/d. Then, with the

notations y(t) = e"*ye~ %2 and p,(x) = y(x, 1),

H'O'Y(t)HLf(R,L%(Rd)) < Cc/i H,YHG%J .

Note the Lorentz-1 norm (dual of weak norm) on the right side!
Via real interpolation, we get the full result.

Corollary 3. Let d > 1 and assume that 1 < p,q < oo satisfy

d-+ 1 2 d
1<q<L and —+ —=d.
d—1 P q

Then,

[0l 2 @ o meyy < Caa Il 2
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THE DUAL FORMULATION

Using Holder’s inequality (for operators and for functions) and the fact that

// V(t,z)py () dedt = Trfy/ e IRV (t,-)etS dt
R x R4 R

we see that Theorem 1 is equivalent to

Theorem 4. Let d > 1 and assume that 1 < p’,q" < co satisfy

d 2 d
1+-<¢ <00 and — + — =2.
2 p
Then, with the same constant as in Theorem 1,
—itA itA
[ vt e a| < CaglVily oy
R &S24’ ¢ e

By interpolation it suffices to prove this for ¢ =p' =1+ d/2.
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PROOF OF THEOREM 2

' | d—+2 | | d—+2
/ —ztAV( ) itA dt — Ty (/ e—ztA‘/(t7 _)eztA dt)
Gd+2 R

/ / Tr V tl, T + Ztlp) V(td_|_2, T + 2td+2p) dtd_|_2 s dtl

For V > 0,

Here we use the notation

flz+2tp) = e7" 2 f(2)e" 2.

Lemma 5 (Generalized Kato—Simon—Seiler ineq.). For a,3,7,0 € R andr > 2,

1Nl £ (may HgHL"“(Rd)
(2m) % ad — Byl

| f(ax + Bp) g(vx + dp)||gr <

Thus,
[V (1) pavarz - [[V (a2, )|l prrase

Tr (V(th T + Qtlp) e V(td_|_2, T + 2td_|_2p)> | <

(4m)? [t — ta] 752 - [t — | 752
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PROOF OF THEOREM 2, CONT’'D
We have shown that

R

Lemma 6 (Multi-linear HLS inequality; Christ, Beckner). Assume that
(Bij)i<ij<n and (rk)i<k<n are real-numbers such that

tat2 -+ dly

42 [ /va, lggrars - IV ltasas gz

Sd+2

t1 — o] T2 - [tgqo — t1|THE

N
—1
Bii=0, 0<B;;=8u<1, m>1, Z—>1 Zﬁzk_ "k )
k=1
Then f1 o fn(ty) N
g odty e dt | S C L kllre ) -
ILic; | J k=1
For us, N =d + 2, Bij = j,z'_|_1d/(d—|— 2) and r, = 1 + d/2 and thus
| | d+2
[[emveaesal — <aviit,. o
R Sd+2
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AN APPLICATION

Consider the unitary propagator Uy (t,tg) satisfying

.0
ZEUv(t,to) = (— A + V(t,ﬂ?))Uv(t,to), Uv(to,to) = 1,

and the wave operator
Wy (t,to) = Up(to, ) Uy (t,to) = ! P02y (¢, 1) . (2)
The wave operator can be formally expanded in a Dyson series.

Theorem 7. Let d > 1 and assume that 1 < p’,q" < 0o satisfy
d 2 d
1+-<¢ <00 and —+—=2.
2 P q

If V e Lp (R, Lq (Rd)), then lim;_, 4+ Wy (t,t9) — 1 € &S24 and the Dyson series
CONVErges in qu

Improves parts of results of Howland, Yajima, Jensen, ...
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THANK YOU FOR YOUR ATTENTION!
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