The Strichartz inequality for orthonormal functions

Rupert L. Frank
Caltech
Joint work with Mathieu Lewin, Elliott Lieb and Robert Seiringer
Strichartz inequality for orthonormal functions
J. Eur. Math. Soc., to appear. Preprint: arXiv:1306.1309
Joint work in progress with Julien Sabin
TexAMP, Houston, October 26, 2013

Introduction - The Schrödinger equation

By spectral theory the solution $e^{-i t H} \psi$ of the time-dependent Schrödinger equation

$$
i \frac{\partial}{\partial t} \Psi=H \Psi,\left.\quad \Psi\right|_{t=0}=\psi
$$

with H self-adjoint satisfies $\left\|e^{-i t H} \psi\right\|=\|\psi\|$ for all $t \in \mathbb{R}$.
Here we are interested in the phenomenon of dispersion.
Example: $H=-\Delta$ in $L^{2}\left(\mathbb{R}^{d}\right)$ and $\psi(x)=\left(\pi \sigma^{2}\right)^{-d / 4} e^{i p \cdot x} e^{-x^{2} / 2 \sigma^{2}}$. Then

$$
\left|\left(e^{i t \Delta} \psi\right)(x)\right|^{2}=\left(\frac{\sigma^{2}}{\pi\left(\sigma^{4}+4 t^{2}\right)}\right)^{d / 2} e^{-\sigma^{2}(x-2 t p)^{2} /\left(\sigma^{4}+4 t^{2}\right)}
$$

Dispersion is quantified by Strichartz inequalities. Simplest form:

$$
\int_{\mathbb{R}} \int_{\mathbb{R}^{d}}\left|\left(e^{i t \Delta} \psi\right)(x)\right|^{2(d+2) / d} d x d t \leq C_{d}\left(\int_{\mathbb{R}^{d}}|\psi(x)|^{2} d x\right)^{(d+2) / d}
$$

Due to Strichartz (1977); see also Lindblad-Sogge, Ginibre-Velo, Keel-Tao, Foschi, ...

Goal - A Strichartz inequality for orthonormal functions

Is there an inequality for

$$
\int_{\mathbb{R}^{2}} \int_{\mathbb{R}^{d}}\left(\sum_{j}\left|\left(e^{i t \Delta} \psi_{j}\right)(x)\right|^{2}\right)^{(d+2) / d} d x d t
$$

with ψ_{j} orthonormal in $L^{2}\left(\mathbb{R}^{d}\right)$?
Obvious answer: By triangle inequality (without using orthogonality!)

$$
\int_{\mathbb{R}} \int_{\mathbb{R}^{d}}\left(\sum_{j=1}^{N}\left|\left(e^{i t \Delta} \psi_{j}\right)(x)\right|^{2}\right)^{(d+2) / d} d x d t \leq C_{d} N^{(d+2) / d}
$$

Can we do better than that?
Main result: Yes, we can!

$$
\int_{\mathbb{R}^{d}} \int_{\mathbb{R}^{d}}\left(\sum_{j=1}^{N}\left|\left(e^{i t \Delta} \psi_{j}\right)(x)\right|^{2}\right)^{(d+2) / d} d x d t \leq C_{d}^{\prime} N^{(\mathbf{d}+\mathbf{1}) / \mathrm{d}}
$$

And this is best possible!

Compare with Lieb-Thirring inequalities

The Sobolev interpolation inequality says that for $\gamma \geq 1$ (and more)

$$
\int_{\mathbb{R}^{d}}|\nabla \psi|^{2} d x \geq S_{d, \gamma}\left(\int_{\mathbb{R}^{d}}|\psi|^{2} d x\right)^{-\frac{\gamma-1}{d / 2}}\left(\int_{\mathbb{R}^{d}}|\psi|^{\frac{2(\gamma+d / 2)}{\gamma+d / 2-1}} d x\right)^{\frac{\gamma+d / 2-1}{d / 2}} .
$$

This was generalized by Lieb-Thirring (1976) to orthonormal functions ψ_{j}

$$
\sum_{j=1}^{N} \int_{\mathbb{R}^{d}}\left|\nabla \psi_{j}\right|^{2} d x \geq K_{d, \gamma} N^{-\frac{\gamma-1}{d / 2}}\left(\int_{\mathbb{R}^{d}}\left(\sum_{j=1}^{N}\left|\psi_{j}\right|^{2}\right)^{\frac{\gamma+d / 2}{\gamma+d / 2-1}} d x\right)^{\frac{\gamma+d / 2-1}{d / 2}}
$$

This is better than $N^{-\frac{\gamma}{d / 2}}$ (from triangle inequality) and optimal in the semi-classical limit. Case $\gamma=1$ is used in the Lieb-Thirring proof of stability of matter.

Slightly more precise version: for any operator $\Gamma \geq 0$ on $L^{2}\left(\mathbb{R}^{d}\right)$,

$$
\operatorname{Tr}(-\Delta) \Gamma \geq K_{d, \gamma}\left(\operatorname{Tr} \Gamma^{\frac{\gamma}{\gamma-1}}\right)^{-\frac{\gamma-1}{d / 2}}\left(\int_{\mathbb{R}^{d}} \Gamma(x, x)^{\frac{\gamma+d / 2}{\gamma+d / 2-1}} d x\right)^{\frac{\gamma+d / 2-1}{d / 2}} .
$$

'Semi-classical' intuition behind Strichartz

$$
\text { Why is } \iint\left(\sum_{j=1}^{N}\left|\left(e^{i t \Delta} \psi_{j}\right)(x)\right|^{2}\right)^{(2+d) / d} d x d t \leq C_{d}^{\prime} N^{(\mathrm{d}+1) / \mathrm{d}} \text { best possible? }
$$

Heuristics: At $t=0$ consider N electrons in a box of size L with const. density $\rho=L^{-d} N$. For $|t| \geq T$ the electrons have (approximately) disjoint supports and therefore

$$
\iint_{|t| \geq T}\left(\sum_{j=1}^{N}\left|\left(e^{i t \Delta} \psi_{j}\right)(x)\right|^{2}\right)^{(2+d) / d} d x d t \approx N \ll N^{(d+1) / d}
$$

We think of T as the typical time it takes an electron to move a distance comparable with the size of the system. By Thomas-Fermi theory the expected momentum per particle is $\approx \rho^{1 / d}$ and therefore, if the electrons move ballistically $T \approx L \rho^{-1 / d}$. Thus,

$$
\iint_{|t| \leq T}\left(\sum_{j=1}^{N}\left|\left(e^{i t \Delta} \psi_{j}\right)(x)\right|^{2}\right)^{(2+d) / d} d x d t \approx T L^{d} \rho^{(2+d) / d} \approx N^{(d+1) / d}
$$

The main Result

Theorem 1. Let $d \geq 1$ and assume that $1<p, q<\infty$ satisfy

$$
1<q \leq 1+\frac{2}{d} \quad \text { and } \quad \frac{2}{p}+\frac{d}{q}=d
$$

Then, for any orthonormal ψ_{j} and any $n_{j} \in \mathbb{C}$

$$
\begin{equation*}
\int_{\mathbb{R}}\left(\left.\left.\int_{\mathbb{R}^{d}}\left|\sum_{j} n_{j}\right|\left(e^{i t \Delta} \psi_{j}\right)(x)\right|^{2}\right|^{q} d x\right)^{\frac{p}{q}} d t \leq C_{d, q}^{p}\left(\sum_{j}\left|n_{j}\right|^{\frac{2 q}{q+1}}\right)^{\frac{p(q+1)}{2 q}} \tag{1}
\end{equation*}
$$

that is, with the notations $\gamma(t)=e^{i t \Delta} \gamma e^{-i t \Delta}$ and $\rho_{\gamma}(x)=\gamma(x, x)$,

$$
\left\|\rho_{\gamma(t)}\right\|_{L_{t}^{p}\left(\mathbb{R}, L_{x}^{q}\left(\mathbb{R}^{d}\right)\right)} \leq C_{d, q}\|\gamma\|_{\mathfrak{S}^{\frac{2 q}{q+1}}} .
$$

This is best possible in the sense that

$$
\sup _{\gamma} \frac{\left\|\rho_{\gamma(t)}\right\|_{L_{t}^{p}\left(\mathbb{R}, L_{x}^{q}\left(\mathbb{R}^{d}\right)\right)}}{\|\gamma\|_{\mathfrak{S}^{r}}}=\infty \quad \text { if } r>\frac{2 q}{q+1}
$$

Remarks

Recall

$$
\left\|\rho_{\gamma(t)}\right\|_{L_{t}^{p}\left(\mathbb{R}, L_{x}^{q}\left(\mathbb{R}^{d}\right)\right)} \leq C_{d, q}\|\gamma\|_{\mathfrak{S}^{\frac{2 q}{q+1}}} \quad \text { if } 1<q \leq 1+\frac{2}{d}
$$

Remarks. (1) The inequality with the trace norm $\|\gamma\|_{\mathfrak{S}^{1}}$ on the right side is known, even for the full range $1 \leq p, q \leq \infty$ with $(p, q, d) \neq(1, \infty, 2)$ (plus scaling condition). (2) This implies an inhomogeneous Strichartz inequality: if

$$
i \dot{\gamma}(t)=[-\Delta, \gamma(t)]+i R(t), \quad \gamma\left(t_{0}\right)=0
$$

with $R(t)$ self-adjoint, then for q as in our theorem

$$
\left\|\rho_{\gamma(t)}\right\|_{L_{t}^{p}\left(\mathbb{R}, L_{x}^{q}\left(\mathbb{R}^{d}\right)\right)} \leq C\left\|\int_{\mathbb{R}} e^{-i s \Delta}|R(s)| e^{i s \Delta} d s\right\|_{\mathfrak{S}^{\frac{2 q}{q+1}}}
$$

(3) We prove that the inequality fails for $q \geq(d+1) /(d-1)$. How about the range $1+2 / d<q<(d+1) /(d-1)$?

A New Result

The following solves the endpoint case. This is joint work with J. Sabin.
Theorem 2. Let $d \geq 1, q=(d+1) /(d-1)$ and $p=(d+1) / d$. Then, with the notations $\gamma(t)=e^{i t \Delta} \gamma e^{-i t \Delta}$ and $\rho_{\gamma}(x)=\gamma(x, x)$,

$$
\left\|\rho_{\gamma(t)}\right\|_{L_{t}^{p}\left(\mathbb{R}, L_{x}^{q}\left(\mathbb{R}^{d}\right)\right)} \leq C_{d}^{\prime}\|\gamma\|_{\mathfrak{S}^{\frac{2 q}{q+1}, 1}} .
$$

Note the Lorentz-1 norm (dual of weak norm) on the right side! Via real interpolation, we get the full result.

Corollary 3. Let $d \geq 1$ and assume that $1<p, q<\infty$ satisfy

$$
1<q<\frac{d+1}{d-1} \quad \text { and } \quad \frac{2}{p}+\frac{d}{q}=d
$$

Then,

$$
\left\|\rho_{\gamma(t)}\right\|_{L_{t}^{p}\left(\mathbb{R}, L_{x}^{q}\left(\mathbb{R}^{d}\right)\right)} \leq C_{d, q}\|\gamma\|_{\mathfrak{S}^{\frac{2 q}{q+1}}} .
$$

The dual formulation

Using Hölder's inequality (for operators and for functions) and the fact that

$$
\iint_{\mathbb{R} \times \mathbb{R}^{d}} V(t, x) \rho_{\gamma(t)}(x) d x d t=\operatorname{Tr} \gamma \int_{\mathbb{R}} e^{-i t \Delta} V(t, \cdot) e^{i t \Delta} d t
$$

we see that Theorem 1 is equivalent to
Theorem 4. Let $d \geq 1$ and assume that $1<p^{\prime}, q^{\prime}<\infty$ satisfy

$$
1+\frac{d}{2} \leq q^{\prime}<\infty \quad \text { and } \quad \frac{2}{p^{\prime}}+\frac{d}{q^{\prime}}=2
$$

Then, with the same constant as in Theorem 1,

$$
\left\|\int_{\mathbb{R}} e^{-i t \Delta} V(t, \cdot) e^{i t \Delta} d t\right\|_{\mathfrak{S}^{2} q^{\prime}} \leq C_{d, q}\|V\|_{L_{t}^{p^{\prime}}\left(\mathbb{R}, L_{x}^{q^{\prime}}\left(\mathbb{R}^{d}\right)\right)}
$$

By interpolation it suffices to prove this for $q^{\prime}=p^{\prime}=1+d / 2$.

Proof of Theorem 2

For $V \geq 0$,

$$
\begin{aligned}
& \left\|\int_{\mathbb{R}} e^{-i t \Delta} V(t, \cdot) e^{i t \Delta} d t\right\|_{\mathfrak{S}^{d+2}}^{d+2}=\operatorname{Tr}\left(\int_{\mathbb{R}} e^{-i t \Delta} V(t, \cdot) e^{i t \Delta} d t\right)^{d+2} \\
& \quad=\int_{\mathbb{R}} \cdots \int_{\mathbb{R}} \operatorname{Tr} V\left(t_{1}, x+2 t_{1} p\right) \cdots V\left(t_{d+2}, x+2 t_{d+2} p\right) d t_{d+2} \cdots d t_{1}
\end{aligned}
$$

Here we use the notation

$$
f(x+2 t p)=e^{-i t \Delta} f(x) e^{i t \Delta} .
$$

Lemma 5 (Generalized Kato-Simon-Seiler ineq.). For $\alpha, \beta, \gamma, \delta \in \mathbb{R}$ and $r \geq 2$,

$$
\|f(\alpha x+\beta p) g(\gamma x+\delta p)\|_{\mathfrak{S}^{r}} \leq \frac{\|f\|_{L^{r}\left(\mathbb{R}^{d}\right)}\|g\|_{L^{r}\left(\mathbb{R}^{d}\right)}}{(2 \pi)^{\frac{d}{r}}|\alpha \delta-\beta \gamma|^{\frac{d}{r}}} .
$$

Thus,

$$
\left|\operatorname{Tr}\left(V\left(t_{1}, x+2 t_{1} p\right) \cdots V\left(t_{d+2}, x+2 t_{d+2} p\right)\right)\right| \leq \frac{\left\|V\left(t_{1}, \cdot\right)\right\|_{L_{x}^{1+d / 2}} \cdots\left\|V\left(t_{d+2}, \cdot\right)\right\|_{L_{x}^{1+d / 2}}}{(4 \pi)^{d}\left|t_{1}-t_{2}\right|^{\frac{d}{d+2}} \cdots\left|t_{d+2}-t_{1}\right|^{\frac{d}{d+2}}}
$$

Proof of Theorem 2, cont'd

We have shown that

$$
\left\|\int_{\mathbb{R}} e^{-i t \Delta} V(t, \cdot) e^{i t \Delta} d t\right\|_{\mathfrak{S}^{d+2}}^{d+2} \leq \int_{\mathbb{R}} \cdots \int_{\mathbb{R}} \frac{\left\|V\left(t_{1}, \cdot\right)\right\|_{L_{x}^{1+d / 2}} \cdots\left\|V\left(t_{d+2}, \cdot\right)\right\|_{L_{x}^{1+d / 2}}}{(4 \pi)^{d}\left|t_{1}-t_{2}\right|^{\frac{d}{d+2}} \cdots\left|t_{d+2}-t_{1}\right|^{\frac{d}{d+2}}} d t_{d+2} \cdots d t_{1}
$$

Lemma 6 (Multi-linear HLS inequality; Christ, Beckner). Assume that $\left(\beta_{i j}\right)_{1 \leq i, j \leq N}$ and $\left(r_{k}\right)_{1 \leq k \leq N}$ are real-numbers such that

$$
\beta_{i i}=0, \quad 0 \leq \beta_{i j}=\beta_{j i}<1, \quad r_{k}>1, \quad \sum_{k=1}^{N} \frac{1}{r_{k}}>1, \quad \sum_{i=1}^{N} \beta_{i k}=\frac{2\left(r_{k}-1\right)}{r_{k}}
$$

Then

$$
\left|\int_{\mathbb{R}} \cdots \int_{\mathbb{R}} \frac{f_{1}\left(t_{1}\right) \cdots f_{N}\left(t_{N}\right)}{\prod_{i<j}\left|t_{i}-t_{j}\right|^{\beta_{i j}}} d t_{N} \cdots d t_{1}\right| \leq C \prod_{k=1}^{N}\left\|f_{k}\right\|_{L^{r_{k}(\mathbb{R})}}
$$

For us, $N=d+2, \beta_{i j}=\delta_{j, i+1} d /(d+2)$ and $r_{k}=1+d / 2$ and thus

$$
\left\|\int_{\mathbb{R}} e^{-i t \Delta} V(t, \cdot) e^{i t \Delta} d t\right\|_{\mathfrak{S}^{d+2}}^{d+2} \leq C\|V\|_{L_{t, x}^{1+d / 2}}^{d+2}
$$

An application

Consider the unitary propagator $U_{V}\left(t, t_{0}\right)$ satisfying

$$
i \frac{\partial}{\partial t} U_{V}\left(t, t_{0}\right)=(-\Delta+V(t, x)) U_{V}\left(t, t_{0}\right), \quad U_{V}\left(t_{0}, t_{0}\right)=1
$$

and the wave operator

$$
\begin{equation*}
\mathcal{W}_{V}\left(t, t_{0}\right):=U_{0}\left(t_{0}, t\right) U_{V}\left(t, t_{0}\right)=e^{i\left(t_{0}-t\right) \Delta} U_{V}\left(t, t_{0}\right) \tag{2}
\end{equation*}
$$

The wave operator can be formally expanded in a Dyson series.
Theorem 7. Let $d \geq 1$ and assume that $1<p^{\prime}, q^{\prime}<\infty$ satisfy

$$
1+\frac{d}{2} \leq q^{\prime}<\infty \quad \text { and } \quad \frac{2}{p^{\prime}}+\frac{d}{q^{\prime}}=2
$$

If $V \in L_{t}^{p^{\prime}}\left(\mathbb{R}, L_{x}^{q^{\prime}}\left(\mathbb{R}^{d}\right)\right)$, then $\lim _{t \rightarrow \pm \infty} \mathcal{W}_{V}\left(t, t_{0}\right)-1 \in \mathfrak{S}^{2 q^{\prime}}$ and the Dyson series converges in $\mathfrak{S}^{2 q^{\prime}}$.

Improves parts of results of Howland, Yajima, Jensen, ...

THANK YOU FOR YOUR ATTENTION!

