Approximate Analysis to the KdV-Burgers Equation

Zhaosheng Feng

Department of Mathematics University of Texas-Pan American 1201 W. University Dr. Edinburg, Texas 78539, USA E-mail: zsfeng@utpa.edu

October 26, 2013

Texas Analysis and Mathematical Physics Symposium-Rice University

(日) (四) (王) (王) (王)

590

Introduction 0000000	Qualitative Analysis	Approximate Solution	Conclusion O	Acknowledgement O
Outline				

- Generalized KdV-Burgers Equation
- KdV-Burgers Equation
- Planar Polynomial Systems and Abel Equation

イロト 不得 トイヨト イヨト

Э

Introduction 00000000	Qualitative Analysis	Approximate Solution	Conclusion O	Acknowledgement O
Outline				

- Generalized KdV-Burgers Equation
- KdV-Burgers Equation
- Planar Polynomial Systems and Abel Equation

2 Qualitative Analysis

- Generalized Abel Equation
- Property of Our Operator
- Two Theorems

イロト 不得下 イヨト イヨト

= nac

Introduction 00000000	Qualitative Analysis	Approximate Solution	Conclusion O	Acknowledgement O
Outline				

Introduction

- Generalized KdV-Burgers Equation
- KdV-Burgers Equation
- Planar Polynomial Systems and Abel Equation

2 Qualitative Analysis

- Generalized Abel Equation
- Property of Our Operator
- Two Theorems

Approximate Solution

- 2D KdV-Burgers Equation
- Resultant Abel Equation
- Approximate Solution to 2D KdV-Burgers Equation

イロト イポト イヨト イヨト

Sac

Introduction 00000000	Qualitative Analysis	Approximate Solution	Conclusion O	Acknowledgement O	
Outline					

Introduction

- Generalized KdV-Burgers Equation
- KdV-Burgers Equation
- Planar Polynomial Systems and Abel Equation

2 Qualitative Analysis

- Generalized Abel Equation
- Property of Our Operator
- Two Theorems

3 Approximate Solution

- 2D KdV-Burgers Equation
- Resultant Abel Equation
- Approximate Solution to 2D KdV-Burgers Equation

Conclusion

イロト イポト イヨト イヨト

Sac

Introduction 00000000	Qualitative Analysis	Approximate Solution	Conclusion O	Acknowledgement O
Outline				

Outline

- Generalized KdV-Burgers Equation
- KdV-Burgers Equation
- Planar Polynomial Systems and Abel Equation

2 Qualitative Analysis

- Generalized Abel Equation
- Property of Our Operator
- Two Theorems

3 Approximate Solution

- 2D KdV-Burgers Equation
- Resultant Abel Equation
- Approximate Solution to 2D KdV-Burgers Equation

Conclusion

Acknowledgement

イロト イポト イヨト イヨト

Sac

• 0 000000							
Introduction	Qualitative Analysis	Approximate Solution	Conclusion	Acknowledgement			

• Generalized Korteweg-de Vries-Burgers equation [1, 2]

$$u_t + \left(\delta u_{xx} + \frac{\beta}{p}u^p\right)_x + \alpha u_x - \mu u_{xx} = 0, \tag{1}$$

イロト 不得 トイヨト イヨト 二日

nac

Introduction •••••		Qualitative Analysis		Approximate Solution	Conclusion O	Acknowledgement O
~			_			

• Generalized Korteweg-de Vries-Burgers equation [1, 2]

$$u_t + \left(\delta u_{xx} + \frac{\beta}{p}u^p\right)_x + \alpha u_x - \mu u_{xx} = 0, \tag{1}$$

イロト イポト イヨト イヨト 二日

San

where *u* is a function of *x* and *t*, α , β and p > 0 are real constants, μ and δ are coefficients of dissipation and dispersion, respectively.

• The type of such problems arises in modeling waves generated by a wavemaker in a channel and waves incoming from deep water into nearshore zones.

Introduction •••••	Qualitative Analysis	Approximate Solution	Conclusion O	Acknowledgement O
C 1'		n		

• Generalized Korteweg-de Vries-Burgers equation [1, 2]

$$u_t + \left(\delta u_{xx} + \frac{\beta}{p}u^p\right)_x + \alpha u_x - \mu u_{xx} = 0, \tag{1}$$

イロト イポト イヨト イヨト 二日

San

- The type of such problems arises in modeling waves generated by a wavemaker in a channel and waves incoming from deep water into nearshore zones.
- The type of such models has the simplest form of wave equation in which nonlinearity $(u^p)_x$, dispersion u_{xxx} and dissipation u_{xx} all occur.

Introduction •••••	Qualitative Analysis	Approximate Solution	Conclusion O	Acknowledgement O
C 1'		n		

• Generalized Korteweg-de Vries-Burgers equation [1, 2]

$$u_t + \left(\delta u_{xx} + \frac{\beta}{p}u^p\right)_x + \alpha u_x - \mu u_{xx} = 0, \tag{1}$$

イロト イポト イヨト イヨト 二日

DQA

- The type of such problems arises in modeling waves generated by a wavemaker in a channel and waves incoming from deep water into nearshore zones.
- The type of such models has the simplest form of wave equation in which nonlinearity $(u^p)_x$, dispersion u_{xxx} and dissipation u_{xx} all occur.

Introduction •••••	Qualitative Analysis	Approximate Solution	Conclusion O	Acknowledgement O
C 1'		n		

_ ___

• Generalized Korteweg-de Vries-Burgers equation [1, 2]

$$u_t + \left(\delta u_{xx} + \frac{\beta}{p}u^p\right)_x + \alpha u_x - \mu u_{xx} = 0, \tag{1}$$

イロト 不得 トイヨト イヨト 二日

DQA

- The type of such problems arises in modeling waves generated by a wavemaker in a channel and waves incoming from deep water into nearshore zones.
- The type of such models has the simplest form of wave equation in which nonlinearity $(u^p)_x$, dispersion u_{xxx} and dissipation u_{xx} all occur.
- J.L. Bona, W.G. Pritchard and L.R. Scott, *Philos. Trans. Roy. Soc. London Ser. A*, **302** (1981), 457–510.

Introduction ●OOOOOOO		Qualitative Analysis		Approximate Solution	Conclusion O	Acknowledgement O
~			-			

_ ___

• Generalized Korteweg-de Vries-Burgers equation [1, 2]

$$u_t + \left(\delta u_{xx} + \frac{\beta}{p}u^p\right)_x + \alpha u_x - \mu u_{xx} = 0, \tag{1}$$

- The type of such problems arises in modeling waves generated by a wavemaker in a channel and waves incoming from deep water into nearshore zones.
- The type of such models has the simplest form of wave equation in which nonlinearity $(u^p)_x$, dispersion u_{xxx} and dissipation u_{xx} all occur.
- J.L. Bona, W.G. Pritchard and L.R. Scott, *Philos. Trans. Roy. Soc. London Ser. A*, **302** (1981), 457–510.
- [2] J.L.Bona, S.M. Sun and B.Y. Zhang, Dyn. Partial Differ. Equs. 3 (2006), 1–69.

Introduction		Qualitative Analysis		Approximate Solution	Conclusion	Acknowledgement
0000000						
D	-		1 17 187 19			

• Choices of $\delta = \alpha = 0$ and p = 2 lead (1) to the Burgers equation [3]:

$$u_t + \alpha u u_x + \beta u_{xx} = 0, \qquad (2)$$

(日)(御)(王)(王)(王)

590

KdV-Burgers Equation Z. Feng Department of Mathematics, University of Texas-Pan American, Edinburg, USA 4/26

0000000				
Introduction	Qualitative Analysis	Approximate Solution	Conclusion	Acknowledgement

• Choices of $\delta = \alpha = 0$ and p = 2 lead (1) to the Burgers equation [3]:

$$u_t + \alpha u u_x + \beta u_{xx} = 0, \qquad (2)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

with the wave solution

$$u(x, t) = \frac{2k}{\alpha} + \frac{2\beta k}{\alpha} \tanh k(x - 2kt).$$

Introduction •••••••	Qualitative Analysis	Approximate Solution	Conclusion O	Acknowledgement 0

• Choices of $\delta = \alpha = 0$ and p = 2 lead (1) to the Burgers equation [3]:

$$u_t + \alpha u u_x + \beta u_{xx} = 0, \qquad (2)$$

with the wave solution

$$u(x, t) = \frac{2k}{\alpha} + \frac{2\beta k}{\alpha} \tanh k(x - 2kt).$$

• Choices of $\alpha = \mu = 0$ and p = 2 lead (1) to the KdV equation [4]:

$$u_t + \alpha u u_x + s u_{xxx} = 0, \tag{3}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction •••••••	Qualitative Analysis	Approximate Solution	Conclusion O	Acknowledgement O

• Choices of $\delta = \alpha = 0$ and p = 2 lead (1) to the Burgers equation [3]:

$$u_t + \alpha u u_x + \beta u_{xx} = 0, \qquad (2)$$

with the wave solution

$$u(x, t) = \frac{2k}{\alpha} + \frac{2\beta k}{\alpha} \tanh k(x - 2kt).$$

• Choices of $\alpha = \mu = 0$ and p = 2 lead (1) to the KdV equation [4]:

$$u_t + \alpha u u_x + s u_{xxx} = 0, \tag{3}$$

(日)(御)(王)(王)(王)

Dac

with the soliton solution [5]

$$u(x, t) = \frac{12sk^2}{\alpha}\operatorname{sech}^2 k(x - 4sk^2t).$$

Introduction •••••••	Qualitative Analysis	Approximate Solution	Conclusion O	Acknowledgement 0

• Choices of $\delta = \alpha = 0$ and p = 2 lead (1) to the Burgers equation [3]:

$$u_t + \alpha u u_x + \beta u_{xx} = 0, \qquad (2)$$

with the wave solution

$$u(x, t) = \frac{2k}{\alpha} + \frac{2\beta k}{\alpha} \tanh k(x - 2kt).$$

• Choices of $\alpha = \mu = 0$ and p = 2 lead (1) to the KdV equation [4]:

$$u_t + \alpha u u_x + s u_{xxx} = 0, \tag{3}$$

イロト 不得 とくき とくきとうき

Dac

with the soliton solution [5]

$$u(x, t) = \frac{12sk^2}{\alpha}\operatorname{sech}^2 k(x - 4sk^2t).$$

[3] J.M. Burgers, Trans. Roy. Neth. Acad. Sci. 17 (1939), 1-53

Introduction •••••••	Qualitative Analysis	Approximate Solution	Conclusion O	Acknowledgement O

• Choices of $\delta = \alpha = 0$ and p = 2 lead (1) to the Burgers equation [3]:

$$u_t + \alpha u u_x + \beta u_{xx} = 0, \qquad (2)$$

with the wave solution

$$u(x, t) = \frac{2k}{\alpha} + \frac{2\beta k}{\alpha} \tanh k(x - 2kt).$$

• Choices of $\alpha = \mu = 0$ and p = 2 lead (1) to the KdV equation [4]:

$$u_t + \alpha u u_x + s u_{xxx} = 0, \tag{3}$$

イロト 不得 とくほ とくほとう

Dac

with the soliton solution [5]

$$u(x, t) = \frac{12sk^2}{\alpha}\operatorname{sech}^2 k(x - 4sk^2t).$$

[3] J.M. Burgers, *Trans. Roy. Neth. Acad. Sci.* 17 (1939), 1–53
[4] D.J. Korteweg and G. de Vries, *Phil. Mag.* 39 (1895), 422–443.

Introduction ••••••	Qualitative Analysis	Approximate Solution	Conclusion O	Acknowledgement 0

• Choices of $\delta = \alpha = 0$ and p = 2 lead (1) to the Burgers equation [3]:

$$u_t + \alpha u u_x + \beta u_{xx} = 0, \qquad (2)$$

with the wave solution

$$u(x, t) = \frac{2k}{\alpha} + \frac{2\beta k}{\alpha} \tanh k(x - 2kt).$$

• Choices of $\alpha = \mu = 0$ and p = 2 lead (1) to the KdV equation [4]:

$$u_t + \alpha u u_x + s u_{xxx} = 0, \tag{3}$$

with the soliton solution [5]

$$u(x, t) = \frac{12sk^2}{\alpha}\operatorname{sech}^2 k(x - 4sk^2t).$$

- [3] J.M. Burgers, Trans. Roy. Neth. Acad. Sci. 17 (1939), 1–53
- [4] D.J. Korteweg and G. de Vries, *Phil. Mag.* **39** (1895), 422–443.
- [5] N.J. Zabusky and M.D. Kruskal, Phys. Rev. Lett. 15 (1965), 240-243.

Introduction	Qualitative Analysis	Approximate Solution	Conclusion	Acknowledgement			
0000000							
Korteweg-o	Korteweg-de Vries-Burgers Equation						

 Choices of α = 0 and p = 2 lead equation (1) to the standard form of the Korteweg-de Vries-Burgers equation [6]:

$$u_t + \alpha u u_x + \beta u_{xx} + s u_{xxx} = 0. \tag{4}$$

イロト 不得 とくほ とくほとう

3

0000000						
Introduction	Qualitative Analysis	Approximate Solution	Conclusion	Acknowledgement		

 Choices of α = 0 and p = 2 lead equation (1) to the standard form of the Korteweg-de Vries-Burgers equation [6]:

$$u_t + \alpha u u_x + \beta u_{xx} + s u_{xxx} = 0. \tag{4}$$

イロト 不得 トイヨト イヨト 二日

Dac

• Solitary wave solutions of equation (4) are as follows [7, 8, 9]:

$$u(x, t) = \frac{3\beta^2}{25\alpha s} \operatorname{sech}^2 \Psi - \frac{6\beta^2}{25\alpha s} \tanh \Psi \pm \frac{6\beta^2}{25\alpha s}, \qquad (5)$$

Introduction	Qualitative Analysis	Approximate Solution	Conclusion	Acknowledgement

 Choices of α = 0 and p = 2 lead equation (1) to the standard form of the Korteweg-de Vries-Burgers equation [6]:

$$u_t + \alpha u u_x + \beta u_{xx} + s u_{xxx} = 0. \tag{4}$$

イロト イポト イヨト イヨト 二日

nac

• Solitary wave solutions of equation (4) are as follows [7, 8, 9]:

$$u(x, t) = \frac{3\beta^2}{25\alpha s} \operatorname{sech}^2 \Psi - \frac{6\beta^2}{25\alpha s} \tanh \Psi \pm \frac{6\beta^2}{25\alpha s}, \qquad (5)$$

where

$$\Psi = \left[\frac{1}{2}\left(-\frac{\beta}{5s}x \pm \frac{6\beta^3}{125s^2}t\right)\right].$$

0000000						
Introduction	Qualitative Analysis	Approximate Solution	Conclusion	Acknowledgement		

 Choices of α = 0 and p = 2 lead equation (1) to the standard form of the Korteweg-de Vries-Burgers equation [6]:

$$u_t + \alpha u u_x + \beta u_{xx} + s u_{xxx} = 0. \tag{4}$$

イロト 不得 トイヨト イヨト 二日

nac

• Solitary wave solutions of equation (4) are as follows [7, 8, 9]:

$$u(x, t) = \frac{3\beta^2}{25\alpha s} \operatorname{sech}^2 \Psi - \frac{6\beta^2}{25\alpha s} \tanh \Psi \pm \frac{6\beta^2}{25\alpha s}, \qquad (5)$$

where

$$\Psi = \left[\frac{1}{2}\left(-\frac{\beta}{5s}x \pm \frac{6\beta^3}{125s^2}t\right)\right].$$

T7 .				
0000000				
Introduction	Qualitative Analysis	Approximate Solution	Conclusion	Acknowledgement

 Choices of α = 0 and p = 2 lead equation (1) to the standard form of the Korteweg-de Vries-Burgers equation [6]:

$$u_t + \alpha u u_x + \beta u_{xx} + s u_{xxx} = 0. \tag{4}$$

イロト イポト イヨト イヨト 二日

DQA

• Solitary wave solutions of equation (4) are as follows [7, 8, 9]:

$$u(x, t) = \frac{3\beta^2}{25\alpha s} \operatorname{sech}^2 \Psi - \frac{6\beta^2}{25\alpha s} \tanh \Psi \pm \frac{6\beta^2}{25\alpha s}, \qquad (5)$$

where

$$\Psi = \left[\frac{1}{2}\left(-\frac{\beta}{5s}x \pm \frac{6\beta^3}{125s^2}t\right)\right]$$

[6] R.S. Johnson, J. Fluid Mech. 42 (1970), 49-60.

T7 .				
0000000				
Introduction	Qualitative Analysis	Approximate Solution	Conclusion	Acknowledgement

 Choices of α = 0 and p = 2 lead equation (1) to the standard form of the Korteweg-de Vries-Burgers equation [6]:

$$u_t + \alpha u u_x + \beta u_{xx} + s u_{xxx} = 0. \tag{4}$$

イロト イポト イヨト イヨト 二日

DQA

• Solitary wave solutions of equation (4) are as follows [7, 8, 9]:

$$u(x, t) = \frac{3\beta^2}{25\alpha s} \operatorname{sech}^2 \Psi - \frac{6\beta^2}{25\alpha s} \tanh \Psi \pm \frac{6\beta^2}{25\alpha s}, \qquad (5)$$

where

$$\Psi = \left[\frac{1}{2}\left(-\frac{\beta}{5s}x \pm \frac{6\beta^3}{125s^2}t\right)\right]$$

[6] R.S. Johnson, J. Fluid Mech. 42 (1970), 49–60.
[7] Z. Feng, J. Phys. A (Math. Gen.) 36 (2003), 8817–8827.

Introduction	Qualitative Analysis	Approximate Solution	Conclusion	Acknowledgement
00000000				
T Z .				

 Choices of α = 0 and p = 2 lead equation (1) to the standard form of the Korteweg-de Vries-Burgers equation [6]:

$$u_t + \alpha u u_x + \beta u_{xx} + s u_{xxx} = 0. \tag{4}$$

イロト イポト イヨト イヨト 二日

DQA

• Solitary wave solutions of equation (4) are as follows [7, 8, 9]:

$$u(x, t) = \frac{3\beta^2}{25\alpha s} \operatorname{sech}^2 \Psi - \frac{6\beta^2}{25\alpha s} \tanh \Psi \pm \frac{6\beta^2}{25\alpha s}, \quad (5)$$

where

$$\Psi = \left[\frac{1}{2}\left(-\frac{\beta}{5s}x \pm \frac{6\beta^3}{125s^2}t\right)\right]$$

[6] R.S. Johnson, J. Fluid Mech. 42 (1970), 49-60.

[7] Z. Feng, J. Phys. A (Math. Gen.) 36 (2003), 8817-8827.

[8] Z. Feng, Nonlinearity, 20 (2007), 343–356.

Introduction	Qualitative Analysis	Approximate Solution	Conclusion	Acknowledgement
00000000				
T Z .				

 Choices of α = 0 and p = 2 lead equation (1) to the standard form of the Korteweg-de Vries-Burgers equation [6]:

$$u_t + \alpha u u_x + \beta u_{xx} + s u_{xxx} = 0. \tag{4}$$

San

• Solitary wave solutions of equation (4) are as follows [7, 8, 9]:

$$u(x, t) = \frac{3\beta^2}{25\alpha s} \operatorname{sech}^2 \Psi - \frac{6\beta^2}{25\alpha s} \tanh \Psi \pm \frac{6\beta^2}{25\alpha s}, \qquad (5)$$

where

$$\Psi = \left[\frac{1}{2}\left(-\frac{\beta}{5s}x \pm \frac{6\beta^3}{125s^2}t\right)\right]$$

- [6] R.S. Johnson, J. Fluid Mech. 42 (1970), 49-60.
- [7] Z. Feng, J. Phys. A (Math. Gen.) 36 (2003), 8817-8827.
- [8] Z. Feng, Nonlinearity, 20 (2007), 343–356.
- [9] Z. Feng and S. Zheng, Z. angew. Math. Phys. 60 (2009), 756–773.

Introduction	Qualitative Analysis	Approximate Solution	Conclusion O	Acknowledgement O
Figures of Wa	ve Solutions			

KdV-Burgers Equation Z. Feng Department of Mathematics, University of Texas-Pan American, Edinburg, USA 6/26

990

Introduction	Qualitative Analysis	Approximate Solution	Conclusion	Acknowledgement
0000000				
Planar Poly	nomial Systems an	nd Abel Equation		

• Consider planar polynomial systems of the form

$$\dot{x} = -y + p(x, y), \quad \dot{y} = x + q(x, y)$$
 (6)

イロト 不得 トイヨト イヨト

ъ

Introduction	Qualitative Analysis	Approximate Solution	Conclusion	Acknowledgement
00000000				
Planar Poly	nomial Systems an	nd Abel Equation		

• Consider planar polynomial systems of the form

$$\dot{x} = -y + p(x, y), \quad \dot{y} = x + q(x, y)$$
 (6)

イロト 不得 トイヨト イヨト

3

nac

with homogeneous polynomials p(x, y) and q(x, y) of degree k.

Introduction	Qualitative Analysis	Approximate Solution	Conclusion	Acknowledgement
00000000				
Planar Poly	vnomial Systems ar	nd Abel Equation		

• Consider planar polynomial systems of the form

$$\dot{x} = -y + p(x, y), \quad \dot{y} = x + q(x, y)$$
 (6)

with homogeneous polynomials p(x, y) and q(x, y) of degree k.

• For the Poincaré center problem, setting $x = r \cos \theta$, $y = r \sin \theta$ gives

$$\frac{dr}{d\theta} = \frac{r^k \xi(\theta)}{1 + r^{k-1} \eta(\theta)},\tag{7}$$

イロト イポト イヨト イヨト 二日

DQA

where ξ and η are polynomials in $\cos \theta$ and $\sin \theta$ of degree k + 1.

Introduction	Qualitative Analysis	Approximate Solution	Conclusion	Acknowledgement
00000000				
	10	1 4 1 1 22		

Planar Polynomial Systems and Abel Equation

• Consider planar polynomial systems of the form

$$\dot{x} = -y + p(x, y), \quad \dot{y} = x + q(x, y)$$
 (6)

with homogeneous polynomials p(x, y) and q(x, y) of degree k.

• For the Poincaré center problem, setting $x = r \cos \theta$, $y = r \sin \theta$ gives

$$\frac{dr}{d\theta} = \frac{r^k \xi(\theta)}{1 + r^{k-1} \eta(\theta)},\tag{7}$$

イロト イポト イヨト イヨト 二日

DQA

where ξ and η are polynomials in $\cos \theta$ and $\sin \theta$ of degree k + 1.

• Making the coordinate transformation

$$\rho = \frac{r^{k-1}}{1 + r^{k-1}\eta(\theta)}$$

Introduction	Qualitative Analysis	Approximate Solution	Conclusion	Acknowledgement
00000000				
	10	1 4 1 1 22		

Planar Polynomial Systems and Abel Equation

• Consider planar polynomial systems of the form

$$\dot{x} = -y + p(x, y), \quad \dot{y} = x + q(x, y)$$
 (6)

with homogeneous polynomials p(x, y) and q(x, y) of degree k.

• For the Poincaré center problem, setting $x = r \cos \theta$, $y = r \sin \theta$ gives

$$\frac{dr}{d\theta} = \frac{r^k \xi(\theta)}{1 + r^{k-1} \eta(\theta)},\tag{7}$$

where ξ and η are polynomials in $\cos \theta$ and $\sin \theta$ of degree k + 1.

• Making the coordinate transformation

$$\rho = \frac{r^{k-1}}{1 + r^{k-1}\eta(\theta)}$$

we get an Abel equation

$$\frac{d\rho}{d\theta} = a(\theta)\rho^2 + b(\theta)\rho^3,$$

where $a = (k-1)\mathcal{E} + n'$ and $b = (1-k)\mathcal{E}n$.

Introduction	Qualitative Analysis	Approximate Solution	Conclusion O	Acknowledgement 0
Traveling Way	ve Solution			

• Assume that equation (1) has the traveling wave solution of the form

$$u(x,t) = u(\xi), \quad \xi = x - ct,$$

イロト 不得 トイヨト イヨト 二日

Introduction	Qualitative Analysis	Approximate Solution	Conclusion O	Acknowledgement O
Traveling Way	ve Solution			

• Assume that equation (1) has the traveling wave solution of the form

$$u(x,t) = u(\xi), \quad \xi = x - ct,$$

where $c \neq 0$ is the wave velocity. Then equation (1) becomes

$$\delta u''' - \mu u'' + (\alpha - c)u' + \beta u^{p-1}u' = 0, \tag{8}$$

(日)((間))(日)((日))(日)

Introduction	Qualitative Analysis	Approximate Solution	Conclusion O	Acknowledgement O
Traveling W	vave Solution			

• Assume that equation (1) has the traveling wave solution of the form

$$u(x,t) = u(\xi), \quad \xi = x - ct,$$

where $c \neq 0$ is the wave velocity. Then equation (1) becomes

$$\delta u''' - \mu u'' + (\alpha - c)u' + \beta u^{p-1}u' = 0, \tag{8}$$

where $u' = du/d\xi$. Integrating equation (8) once gives

$$u'' - gu' - eu - fu^p - d = 0,$$
(9)

- 日本 - 御本 - 田本 - 田本 - 田
| Introduction | Qualitative Analysis | Approximate Solution | Conclusion | Acknowledgement |
|--------------|----------------------|----------------------|------------|-----------------|
| 00000000 | | | | |
| Traveling W | Vave Solution | | | |

• Assume that equation (1) has the traveling wave solution of the form

$$u(x,t) = u(\xi), \quad \xi = x - ct,$$

where $c \neq 0$ is the wave velocity. Then equation (1) becomes

$$\delta u''' - \mu u'' + (\alpha - c)u' + \beta u^{p-1}u' = 0,$$
(8)

where $u' = du/d\xi$. Integrating equation (8) once gives

$$u'' - gu' - eu - fu^p - d = 0, (9)$$

(日) (四) (日) (日) (日) (日) (日)

where $e = \frac{c-\alpha}{\delta}$, $g = \frac{\mu}{\delta}$, $f = -\frac{\beta}{p\delta}$ and *d* is an integration constant.

Introduction	Qualitative Analysis	Approximate Solution	Conclusion	Acknowledgement
00000000				
Traveling W	Vave Solution			

• Assume that equation (1) has the traveling wave solution of the form

$$u(x,t) = u(\xi), \quad \xi = x - ct,$$

where $c \neq 0$ is the wave velocity. Then equation (1) becomes

$$\delta u''' - \mu u'' + (\alpha - c)u' + \beta u^{p-1}u' = 0, \tag{8}$$

where $u' = du/d\xi$. Integrating equation (8) once gives

$$u'' - gu' - eu - fu^p - d = 0, (9)$$

where $e = \frac{c-\alpha}{\delta}$, $g = \frac{\mu}{\delta}$, $f = -\frac{\beta}{p\delta}$ and *d* is an integration constant.

• Assume that y = u and u' = z, then equation (9) is equivalent to

$$\begin{cases} y' = z, \\ z' = ey + gz + fy^p + d. \end{cases}$$
(10)

San

KdV-Burgers Equation Z. Feng Department of Mathematics, University of Texas-Pan American, Edinburg, USA 8/26

Introduction	Qualitative Analysis	Approximate Solution	Conclusion O	Acknowledgement 0
Global Struct	ure of $p = 2$			

KdV-Burgers Equation Z. Feng Department of Mathematics, University of Texas-Pan American, Edinburg, USA 9/26

▲□▶▲圖▶▲≣▶▲≣▶ ≣ のへで

Introduction	Qualitative Analysis	Approximate Solution	Conclusion O	Acknowledgement O		
Transformed to Abel Equation						

$$\frac{dz}{dy} = \frac{ey + gz + fy^p + d}{z}.$$
(11)

イロト イロト イモト イモト 三日

Sac

Introduction	Qualitative Analysis	Approximate Solution	Conclusion O	Acknowledgement O
Transformed to Abel Equation		l		

$$\frac{dz}{dy} = \frac{ey + gz + fy^p + d}{z}.$$
(11)

• Let $z = r^{-1}$. Equation (11) reduces to

$$\frac{dr}{dy} = a(y)r^2 + b(y)r^3,$$
(12)

イロト 不得 トイヨト イヨト 二日

nac

Introduction	Qualitative Analysis	Approximate Solution	Conclusion O	Acknowledgement O
Transforme	ed to Abel Equation			

$$\frac{dz}{dy} = \frac{ey + gz + fy^p + d}{z}.$$
(11)

• Let $z = r^{-1}$. Equation (11) reduces to

$$\frac{dr}{dy} = a(y)r^2 + b(y)r^3, \tag{12}$$

イロト 不得 トイヨト イヨト 二日

Dac

where a(y) = -g and $b(y) = -(ey + fy^p + d)$.

Introduction 0000000	Qualitative Analysis	Approximate Solution	Conclusion O	Acknowledgement O
Transformed	l to Abel Equation			

$$\frac{dz}{dy} = \frac{ey + gz + fy^p + d}{z}.$$
(11)

• Let $z = r^{-1}$. Equation (11) reduces to

$$\frac{dr}{dy} = a(y)r^2 + b(y)r^3, \tag{12}$$

イロト イポト イヨト イヨト 二日

San

where a(y) = -g and $b(y) = -(ey + fy^p + d)$.

• Question: Under what condition one can determine the number of closed solutions of the Abel equation (12).

Introduction	Qualitative Analysis	Approximate Solution	Conclusion O	Acknowledgement O
Transformed to Abel Equation				

$$\frac{dz}{dy} = \frac{ey + gz + fy^p + d}{z}.$$
(11)

• Let $z = r^{-1}$. Equation (11) reduces to

$$\frac{dr}{dy} = a(y)r^2 + b(y)r^3, \tag{12}$$

where a(y) = -g and $b(y) = -(ey + fy^p + d)$.

- Question: Under what condition one can determine the number of closed solutions of the Abel equation (12).
- Open Problem: There have been two longstanding problems, called the Poincaré center-focus problem and the local Hilbert 16th problem. Both are closely related to the Bautin quantities and the Bautin ideal of the Abel equation.

Introduction 0000000	Qualitative Analysis	Approximate Solution	Conclusion O	Acknowledgement O
Integral Form				

$$r' = a(t)r^2 + b(t)r^n, \quad r(t_0) = c, \quad t \in [t_0, t_1], \quad n \ge 3.$$
 (13)

イロト 不得 トイヨト イヨト 二日

500

Introduction 0000000	Qualitative Analysis	Approximate Solution	Conclusion O	Acknowledgement 0
Integral Form				

$$r' = a(t)r^2 + b(t)r^n$$
, $r(t_0) = c$, $t \in [t_0, t_1]$, $n \ge 3$. (13)

• Dividing both sides of equation (13) by r^2 gives

$$\frac{r'}{r^2} = a(t) + b(t)r^{n-2}.$$
(14)

イロト 不得 とうほう うほう

ъ

nac

Introduction 00000000	Qualitative Analysis	Approximate Solution	Conclusion O	Acknowledgement 0
Integral Form				

$$r' = a(t)r^2 + b(t)r^n, \quad r(t_0) = c, \quad t \in [t_0, t_1], \quad n \ge 3.$$
 (13)

• Dividing both sides of equation (13) by r^2 gives

$$\frac{r'}{r^2} = a(t) + b(t)r^{n-2}.$$
(14)

イロト 不得 トイヨト イヨト 二日

DQA

• Integrating equation (14) from t_0 to t yields

$$r(t) = \frac{c}{1 - cA(t) - c \int_{t_0}^t b(\tau) r^{n-2} d\tau},$$
(15)

where $A(t) = \int_{t_0}^t a(\tau) d\tau$.

Introduction 0000000	Qualitative Analysis	Approximate Solution	Conclusion O	Acknowledgement O
Integral Form				

$$r' = a(t)r^2 + b(t)r^n, \quad r(t_0) = c, \quad t \in [t_0, t_1], \quad n \ge 3.$$
 (13)

• Dividing both sides of equation (13) by r^2 gives

$$\frac{r'}{r^2} = a(t) + b(t)r^{n-2}.$$
(14)

• Integrating equation (14) from t_0 to t yields

$$r(t) = \frac{c}{1 - cA(t) - c \int_{t_0}^t b(\tau) r^{n-2} d\tau},$$
(15)

where $A(t) = \int_{t_0}^t a(\tau) d\tau$. • Rewrite equation (15) as

$$r(t) = c \left(1 + A(t) + r(t) \int_{t_0}^t b(\tau) r^{n-2} d\tau \right).$$
(16)

KdV-Burgers Equation Z. Feng Department of Mathematics, University of Texas-Pan American, Edinburg, USA 11/26

Introduction 0000000	Qualitative Analysis	Approximate Solution	Conclusion O	Acknowledgement O
A Nonlinear (Operator			

 $T_c: \mathcal{C}[0,1] \to \mathcal{C}[0,1],$

イロト イポト イヨト イヨト 二日

		rippioximate obration	Conclusion	Acknowledgement
00000000 0000				
A Nonlinear Opera	ntor			

 $T_c: \mathcal{C}[0,1] \to \mathcal{C}[0,1],$

$$T_c(f)(t) \stackrel{def}{=} \frac{c}{1 - cA(t) - c \int_0^t b(\tau) f(\tau)^{n-2} d\tau},$$

イロト イポト イヨト イヨト 二日

Introduction	Qualitative Analysis	Approximate Solution	Conclusion	Acknowledgement
	0000000			
A . N.T 11	A			
A Nonlinea	ar Operator			

 $T_c: \mathcal{C}[0,1] \to \mathcal{C}[0,1],$

$$T_c(f)(t) \stackrel{def}{=} \frac{c}{1 - cA(t) - c \int_0^t b(\tau) f(\tau)^{n-2} d\tau},$$

for given $a, b \in C[0, 1]$ and $c \in \mathbb{R}$. Obviously, T_c is well defined on an arbitrary bounded set of C[0, 1] if c is suitably small. Let us first observe some useful properties of T_c .

イロト 不得 トイヨト イヨト 二日

San

Introduction	Qualitative Analysis	Approximate Solution	Conclusion	Acknowledgement
	0000000			
A Nonlinea	r Operator			

 $T_c: \mathcal{C}[0,1] \to \mathcal{C}[0,1],$

$$T_c(f)(t) \stackrel{def}{=} \frac{c}{1 - cA(t) - c \int_0^t b(\tau) f(\tau)^{n-2} d\tau},$$

for given $a, b \in C[0, 1]$ and $c \in \mathbb{R}$. Obviously, T_c is well defined on an arbitrary bounded set of C[0, 1] if c is suitably small. Let us first observe some useful properties of T_c .

イロト 不得 トイヨト イヨト 二日

Introduction	Qualitative Analysis	Approximate Solution	Conclusion	Acknowledgement
	0000000			
A Nonlinea	r Operator			

 $T_c: \mathcal{C}[0,1] \to \mathcal{C}[0,1],$

$$T_c(f)(t) \stackrel{def}{=} \frac{c}{1 - cA(t) - c \int_0^t b(\tau) f(\tau)^{n-2} d\tau},$$

for given $a, b \in C[0, 1]$ and $c \in \mathbb{R}$. Obviously, T_c is well defined on an arbitrary bounded set of C[0, 1] if c is suitably small. Let us first observe some useful properties of T_c .

[10] Z. Feng, Z. angew. Math. Phys. under review.

イロト イポト イヨト イヨト 二日

Introduction 0000000	Qualitative Analysis	Approximate Solution	Conclusion O	Acknowledgement O
Property of (Our Operator			

Lemma (1)

For $f \in C[0,1]$ and $c \in \mathbb{R}$ with $||f|| \leq M$ and $|c| < c_0 \stackrel{def}{=} (||a|| + ||b|| M^{n-2})^{-1}$, $T_c(f)$ is well defined and differentiable, and satisfies

$$\frac{d}{dt}T_c(f)(t) = a(t)[T_c(f)(t)]^2 + b(t)[T_c(f)(t)]^2 f(t)^{n-2}$$

ヘロト 不得 トイヨト 不良トー

3

Introduction 00000000	Qualitative Analysis	Approximate Solution	Conclusion O	Acknowledgement O
Property of	f Our Operator			

Lemma (1)

For $f \in C[0,1]$ and $c \in \mathbb{R}$ with $||f|| \leq M$ and $|c| < c_0 \stackrel{def}{=} (||a|| + ||b|| M^{n-2})^{-1}$, $T_c(f)$ is well defined and differentiable, and satisfies

$$\frac{d}{dt}T_c(f)(t) = a(t)[T_c(f)(t)]^2 + b(t)[T_c(f)(t)]^2 f(t)^{n-2}$$

Furthermore, we have an identity

$$T_c(f)(t) - T_c(g)(t) = T_c(f)(t)T_c(g)(t)\int_0^t b(\tau)(f(\tau)^{n-2} - g(\tau)^{n-2})d\tau,$$

$$0 \le t \le 1$$

ヘロトス 同トス ヨトス ヨト

= 900

Introduction 00000000	Qualitative Analysis	Approximate Solution	Conclusion O	Acknowledgement O
Property of	f Our Operator			

Lemma (1)

For $f \in C[0, 1]$ and $c \in \mathbb{R}$ with $||f|| \leq M$ and $|c| < c_0 \stackrel{def}{=} (||a|| + ||b|| M^{n-2})^{-1}$, $T_c(f)$ is well defined and differentiable, and satisfies

$$\frac{d}{dt}T_c(f)(t) = a(t)[T_c(f)(t)]^2 + b(t)[T_c(f)(t)]^2 f(t)^{n-2}$$

Furthermore, we have an identity

$$T_c(f)(t) - T_c(g)(t) = T_c(f)(t)T_c(g)(t)\int_0^t b(\tau)(f(\tau)^{n-2} - g(\tau)^{n-2})d\tau,$$

$$0 \le t \le 1$$

for arbitrary $f, g \in C[0, 1]$ and $c \in \mathcal{R}$ with $||f||, ||g|| \leq M$ and $|c| < c_0$.

イロト イ押ト イヨト イヨト

-

DQA

Introduction 00000000	Qualitative Analysis	Approximate Solution	Conclusion O	Acknowledgement 0
Outline of the	Proof			

Step 1: well-defined

$$1 - cA(t) - c \int_0^t b(\tau) f(\tau)^{n-2} d\tau = 0 \Rightarrow$$

$$|c| \ge \frac{1}{|A(t)| + \int_0^t |b(\tau)f(\tau)^{n-2}| d\tau} \ge \frac{1}{||a|| + ||b|| M^{n-2}}.$$

イロト イロト イヨト イヨト

3

990

Introduction 00000000	Qualitative Analysis	Approximate Solution	Conclusion O	Acknowledgement 0
Outline of the	Proof			

Step 1: well-defined

$$\begin{aligned} 1 - cA(t) - c \int_0^t b(\tau) f(\tau)^{n-2} d\tau &= 0 \Rightarrow \\ |c| &\ge \frac{1}{|A(t)| + \int_0^t |b(\tau) f(\tau)^{n-2}| \, d\tau} \ge \frac{1}{||a|| + ||b|| M^{n-2}}. \end{aligned}$$

Step 2: A direct calculation gives

$$\frac{d}{dt}T_{c}(f)(t) = \frac{-c[-ca(t) - cb(t)f(t)^{n-2}]}{(1 - cA(t) - c\int_{0}^{t}b(\tau)f(\tau)^{n-2}d\tau)^{2}}$$

$$= \frac{c^{2}a(t)}{(1 - cA(t) - c\int_{0}^{t}b(\tau)f(\tau)^{n-2}d\tau)^{2}} + \frac{c^{2}b(t)f(t)^{n-2}}{(1 - cA(t) - c\int_{0}^{t}b(\tau)f(\tau)^{n-2}d\tau)^{2}}$$

$$T_{c}(f)(t) - T_{c}(g)(t) = \frac{c}{H(f)} \cdot \frac{c}{H(g)} \cdot \int_{0}^{t}b(\tau)(f(\tau)^{n-2} - g(\tau)^{n-2})d\tau$$

KdV-Burgers Equation Z. Feng Department of Mathematics, University of Texas-Pan American, Edinburg, USA 14/26

Introduction 0000000	Qualitative Analysis	Approximate Solution	Conclusion O	Acknowledgement 0
Lemma 2				

Lemma (2)

Let $c_1 = (||a|| + ||b|| + 1)^{-1}$. Then we have

 $||T_c f|| \le 1$ if $||f|| \le 1$ and $|c| \le c_1$.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction	Qualitative Analysis	Approximate Solution	Conclusion	Acknowledgement
	0000000			
Lemma 2				

Lemma (2)

Let $c_1 = (||a|| + ||b|| + 1)^{-1}$. Then we have

$$||T_c f|| \le 1$$
 if $||f|| \le 1$ and $|c| \le c_1$.

Outline of the Proof.

If $||f|| \leq 1$ and $|c| \leq c_1$, then we have

$$\begin{aligned} \|T_{c}f\| &\leq \frac{|c|}{1-|c|\left(\|a\|+\|b\|\|f\|^{n-2}\right)} \\ &\leq \frac{|c|}{1-|c|\left(\|a\|+\|b\|\right)} \\ &< 1. \end{aligned}$$

The conclusion follows.

Introduction 0000000	Qualitative Analysis	Approximate Solution	Conclusion O	Acknowledgement O
Lemma 3				

Lemma (3)

Let $c_2 = (\sqrt{(n-2)||b||} + ||a|| + ||b|| + 1)^{-1}$. If $|c| \le c_2$, then T_c is a contraction mapping on the close unit ball $\mathcal{B}_1 = \{f \in \mathcal{C}[0,1] | ||f|| \le 1\}$ of $\mathcal{C}[0,1]$.

Outline of the Proof.

It follows from Lemmas 1 and 2 that

$$\begin{aligned} \|T_c(f)(t) - T_c(g)(t)\| &\leq \|T_c(f)\| \|T_c(g)\| \|b\| \|f^{n-2} - g^{n-2}\| \\ &= C\| (f-g)(f^{n-3} + f^{n-4}g + \dots + fg^{n-4} + g^{n-3})\| \\ &\leq (n-2)c\|f-g\|, \end{aligned}$$

where

$$c \stackrel{def}{=} \left(\frac{|c|}{1 - |c| \left(\|a\| + \|b\| \right)} \right)^2 \|b\|.$$

Introduction	Qualitative Analysis	Approximate Solution	Conclusion	Acknowledgement
	00000000			
1				
I hearem I				

Theorem (1)

For given $a, b \in C[0, 1]$ and $c \in \mathbb{R}$ with $|c| \leq (\sqrt{(n-2)}||b|| + ||a|| + ||b|| + 1)^{-1}$, the solution r(t, c) of equation (1) with r(0, c) = c can be uniformly approximated by an iterated sequence $\{T_c^n(f)(t)\}$:

$$r(t, c) = \lim_{n \to \infty} T_c^n(f)(t), \quad 0 \le t \le 1,$$
 (17)

that is,

$$r(t, c) = \frac{c}{1 - cA(t) - c^{n-1} \int_0^t \frac{b(t_1)dt_1}{1 - cA(t_1) - c^{n-1} \int_0^{t_1} \frac{b(t_2)dt_2}{1 - cA(t_2) - c^{n-1} \int_0^{t_2} \cdots}}$$
(18)

for arbitrary $f \in C[0, 1]$ with $||f|| \le 1$. Furthermore, the following error estimate holds

$$r(t, c) - T_c^n(f)(t) = \mathcal{O}(c^{2n}).$$

Introduction 00000000	Qualitative Analysis ○○○○○○●	Approximate Solution	Conclusion O	Acknowledgement O
Theorem 2	: Case of $n = 3$			

• Denote

$$M = \max_{t \in [0,1]} |a(t) \pm b(t)|.$$

996

Introduction	Qualitative Analysis	Approximate Solution	Conclusion	Acknowledgement
0000000	○○○○○○●		O	O
Theorem 2: (Case of $n = 3$			

• Denote

$$M = \max_{t \in [0,1]} |a(t) \pm b(t)|.$$

Theorem (2)

Suppose $a, b \in C[0, 1]$ and $c \in \mathbb{R}$ with

$$|c| \le \max\{(\sqrt{\|b\|} + \|a\| + \|b\| + 1)^{-1}, (2M)^{-1}\}.$$

Then, in formula (18), the following part is bounded

$$\begin{array}{rcl} & b(t_1) \\ \hline & \hline 1 - cA(t_1) - c^2 \int_0^{t_1} \frac{b(t_2)dt_2}{1 - cA(t_2) - c^2 \int_0^{t_2} \cdots} \\ & = & \frac{1}{c} \cdot b(t_1) \cdot \frac{c}{1 - cA(t_1) - c^2 \int_0^{t_1} b(t_2) \cdot \frac{c}{1 - cA(t_2) - c^2 \int_0^{t_2} \cdots} dt_2}. \end{array} \end{array}$$

KdV-Burgers Equation Z. Feng Department of Mathematics, University of Texas-Pan American, Edinburg, USA 18/26

Introduction	Qualitative Analysis	Approximate Solution	Conclusion	Acknowledgement
00000000		●○○○○○	O	O
2D Korteweg-	de Vries-Burgers E	quation		

$$(U_t + \alpha UU_x + \beta U_{xx} + sU_{xxx})_x + \gamma U_{yy} = 0,$$
(19)

イロト イロト イモト イモト 三日

Sac

Introduction	Qualitative Analysis	Approximate Solution	Conclusion	Acknowledgement
0000000		●00000	O	0
2D Korteweg	-de Vries-Burgers H	Equation		

$$(U_t + \alpha UU_x + \beta U_{xx} + sU_{xxx})_x + \gamma U_{yy} = 0, \qquad (19)$$

500

where α , β , *s*, and γ are constants and $\alpha\beta s\gamma \neq 0$.

$$(U_t + \alpha UU_x + \beta U_{xx} + sU_{xxx})_x + \gamma U_{yy} = 0, \qquad (19)$$

where α , β , s, and γ are constants and $\alpha\beta s\gamma \neq 0$.

• Assume that equation (19) has an exact solution in the form

$$U(x, y, t) = U(\xi), \quad \xi = hx + ly - wt.$$
 (20)

イロト 不得 トイヨト イヨト 二日

DQA

$$(U_t + \alpha UU_x + \beta U_{xx} + sU_{xxx})_x + \gamma U_{yy} = 0, \qquad (19)$$

where α , β , s, and γ are constants and $\alpha\beta s\gamma \neq 0$.

• Assume that equation (19) has an exact solution in the form

$$U(x, y, t) = U(\xi), \quad \xi = hx + ly - wt.$$
 (20)

• Substitution of (20) into equation (19) and performing integration twice yields

$$U''(\xi) + \lambda U'(\xi) + aU^2(\xi) + bU(\xi) + d = 0,$$
(21)

(日) (四) (日) (日) (日) (日) (日)

where $v = U(\xi) \in [v_0, v_1], \lambda = \frac{\beta}{sh}, a = \frac{\alpha}{2sh^2}, b = \frac{\gamma l^2 - wh}{sh^4}$ and $d = -\frac{C}{sh^4}$.

Introduction	Qualitative Analysis	Approximate Solution	Conclusion	Acknowledgement
		00000		
Resultant /	Abel Equation			

• Let $v = U(\xi)$ and $y = U'(\xi)$. Equation (21) becomes

$$\frac{dy}{dv}y + \lambda y + av^2 + bv + d = 0.$$
(22)

イロト 不得 トイヨト イヨト 二日

Sac

Introduction Qualitative Analysis Approximate Solution	Conclusion	Acknowledgement

Resultant Abel Equation

• Let $v = U(\xi)$ and $y = U'(\xi)$. Equation (21) becomes

$$\frac{dy}{dv}y + \lambda y + av^2 + bv + d = 0.$$
(22)

イロト 不得 トイヨト イヨト 二日

DQA

Using $z = \frac{1}{y}$ yields $\frac{dz}{dv} = \lambda z^2 + (av^2 + bv + d)z^3, \quad z(v_0) = \frac{1}{U'(\xi_0)} = c.$ (23)

Introduction	Qualitative Analysis	Approximate Solution	Conclusion O	Acknowledgement O
Resultant Abe	el Equation			

• Let $v = U(\xi)$ and $y = U'(\xi)$. Equation (21) becomes

٠

$$\frac{dy}{dv}y + \lambda y + av^2 + bv + d = 0.$$
(22)

イロト イロト イモト イモト 三日

nac

Using
$$z = \frac{1}{y}$$
 yields
 $\frac{dz}{dv} = \lambda z^2 + (av^2 + bv + d)z^3, \quad z(v_0) = \frac{1}{U'(\xi_0)} = c.$ (23)
Let $\eta = \frac{v - v_0}{v_1 - v_0}$, then $\eta \in [0, 1]$ and $v = v_0 + (v_1 - v_0)\eta$.

Dogultont /	hal Equation			
		00000		
Introduction	Qualitative Analysis	Approximate Solution	Conclusion	Acknowledgement

Resultant Aber Equation

• Let $v = U(\xi)$ and $y = U'(\xi)$. Equation (21) becomes

$$\frac{dy}{dv}y + \lambda y + av^2 + bv + d = 0.$$
(22)

Using $z = \frac{1}{y}$ yields $\frac{dz}{dv} = \lambda z^2 + (av^2 + bv + d)z^3, \quad z(v_0) = \frac{1}{U'(\xi_0)} = c.$ (23)

• Let $\eta = \frac{v-v_0}{v_1-v_0}$, then $\eta \in [0, 1]$ and $v = v_0 + (v_1 - v_0)\eta$. So equation (23) reduces to

$$r' = h(\eta)r^2 + k(\eta)r^3, \quad r(0) = c,$$
 (24)

イロト 不得下 不足下 不足下 二日

San
	00000000	00000	
Docultont Ak	al Equation		

Resultant Abel Equation

• Let $v = U(\xi)$ and $y = U'(\xi)$. Equation (21) becomes

$$\frac{dy}{dv}y + \lambda y + av^2 + bv + d = 0.$$
(22)

Using $z = \frac{1}{y}$ yields $\frac{dz}{dv} = \lambda z^2 + (av^2 + bv + d)z^3, \quad z(v_0) = \frac{1}{U'(\xi_0)} = c.$ (23)

• Let $\eta = \frac{v-v_0}{v_1-v_0}$, then $\eta \in [0, 1]$ and $v = v_0 + (v_1 - v_0)\eta$. So equation (23) reduces to

$$r' = h(\eta)r^2 + k(\eta)r^3, \quad r(0) = c,$$
 (24)

where $h(\eta), k(\eta) \in \mathcal{C}[0, 1]$, and

$$\begin{split} h(\eta) &= (v_1 - v_0)\lambda, \\ k(\eta) &= (v_1 - v_0)(av^2 + bv + d). \\ &\stackrel{\scriptstyle <}{\underset{\scriptstyle < \Box \, > \, < \, \Box \, > \, = \, \ldots \,$$

Introduction	Qualitative Analysis	Approximate Solution	Conclusion	Acknowledgement
		000000		
Solution to	Equation (24)			
Solution to	Lqualion (2+)			

• By virtue of Theorem 1, if $|c| \le (\sqrt{\|k\|} + \|h\| + \|k\| + 1)^{-1}$, the solution to equation (24) is

$$r(\eta) = \lim_{n \to +\infty} T_c^n(w)(\eta), \tag{25}$$

(日)(御)(王)(王)(王)

500

Introduction	Qualitative Analysis	Approximate Solution	Conclusion	Acknowledgement
		00000		
Solution to	Equation (24)			

• By virtue of Theorem 1, if $|c| \le (\sqrt{\|k\|} + \|h\| + \|k\| + 1)^{-1}$, the solution to equation (24) is

$$r(\eta) = \lim_{n \to +\infty} T_c^n(w)(\eta), \tag{25}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

where $0 \le \eta \le 1$ for any $w \in C[0, 1]$ with $||w|| \le 1$, and

$$T_{c}(w) = \frac{c}{1 - cH(\eta) - c\int_{0}^{\eta} k(x)w(x)^{n-2}dx}$$

Introduction	Qualitative Analysis	Approximate Solution	Conclusion	Acknowledgement
		00000		
Solution to	Equation (24)			

• By virtue of Theorem 1, if $|c| \le (\sqrt{\|k\|} + \|h\| + \|k\| + 1)^{-1}$, the solution to equation (24) is

$$r(\eta) = \lim_{n \to +\infty} T_c^n(w)(\eta), \tag{25}$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

where $0 \le \eta \le 1$ for any $w \in C[0, 1]$ with $||w|| \le 1$, and

$$T_{c}(w) = \frac{c}{1 - cH(\eta) - c \int_{0}^{\eta} k(x)w(x)^{n-2}dx}$$

where

$$H(\eta) = \int_0^{\eta} h(x) dx = \int_0^{\eta} (v_1 - v_0) \lambda dx = (v_1 - v_0) \lambda \eta,$$

$$k(x) = (v_1 - v_0) \left(a(v_0 + (v_1 - v_0)x)^2 + b(v_0 + (v_1 - v_0)x) + d \right).$$

KdV-Burgers Equation Z. Feng Department of Mathematics, University of Texas-Pan American, Edinburg, USA 21/26

Introduction	Qualitative Analysis	Approximate Solution	Conclusion	Acknowledgement
		000000		

• Recall that $r = \frac{1}{y}$, $y = U'(\xi)$, $\eta = \frac{v - v_0}{v_1 - v_0}$ and $v = U(\xi)$. When conditions of Theorem 1 are fulfilled, we have

$$\frac{1}{U'(\xi)} = \frac{c}{1 - cA(\xi) - c^2 \int_0^{\xi} \frac{b(t_1)dt_1}{1 - cA(t_1) - c^2 \int_0^{t_1} \frac{b(t_2)dt_2}{1 - cA(t_2) - c^2 \int_0^{t_2} \dots}}.$$
 (26)

イロト 不得 トイヨト イヨト 二日

DQA

introduction	Qualitative Analysis	Approximate Solution	Conclusion	Acknowledgement
		000000		

• Recall that $r = \frac{1}{y}$, $y = U'(\xi)$, $\eta = \frac{v - v_0}{v_1 - v_0}$ and $v = U(\xi)$. When conditions of Theorem 1 are fulfilled, we have

$$\frac{1}{U'(\xi)} = \frac{c}{1 - cA(\xi) - c^2 \int_0^{\xi} \frac{b(t_1)dt_1}{1 - cA(t_1) - c^2 \int_0^{t_1} \frac{b(t_2)dt_2}{1 - cA(t_2) - c^2 \int_0^{t_2} \dots}}.$$
 (26)

• When c is small, according to Theorem 2, the coefficient of c^2 is bounded. So we can drop the term containing c^2 and get

$$U'(\xi) \approx \frac{1 - c(v_1 - v_0)\lambda\eta}{c}$$
$$= \frac{1 - c\lambda(U(\xi) - v_0)}{c}$$

イロト イポト イヨト イヨト 二日

San

Introduction	Qualitative Analysis	Approximate Solution	Conclusion	Acknowledgement
		000000		

• Recall that $r = \frac{1}{y}$, $y = U'(\xi)$, $\eta = \frac{v - v_0}{v_1 - v_0}$ and $v = U(\xi)$. When conditions of Theorem 1 are fulfilled, we have

$$\frac{1}{U'(\xi)} = \frac{c}{1 - cA(\xi) - c^2 \int_0^{\xi} \frac{b(t_1)dt_1}{1 - cA(t_1) - c^2 \int_0^{t_1} \frac{b(t_2)dt_2}{1 - cA(t_2) - c^2 \int_0^{t_2} \dots}}.$$
 (26)

• When *c* is small, according to Theorem 2, the coefficient of *c*² is bounded. So we can drop the term containing *c*² and get

$$U^{'}(\xi) \approx \frac{1 - c(v_1 - v_0)\lambda\eta}{c}$$
$$= \frac{1 - c\lambda(U(\xi) - v_0)}{c}$$

That is,

$$U'(\xi) + \lambda U(\xi) = \frac{1}{c} + \lambda v_0. \tag{27}$$

KdV-Burgers Equation Z. Feng Department of Mathematics, University of Texas-Pan American, Edinburg, USA 22/26

Introduction	Qualitative Analysis	Approximate Solution	Conclusion	Acknowledgement
		000000		

• Solving equation (27) gives

$$U(x, y, t) = \frac{\frac{1}{c} + \lambda v_0}{\lambda} + ce^{-\lambda\xi}, \quad \xi = hx + ly - wt$$

where $\lambda = \frac{\beta}{sh}$.

イロト 不得 トイヨト イヨト 二日

500

Introduction	Qualitative Analysis	Approximate Solution	Conclusion	Acknowledgement
		000000		

• Solving equation (27) gives

$$U(x, y, t) = \frac{\frac{1}{c} + \lambda v_0}{\lambda} + ce^{-\lambda\xi}, \quad \xi = hx + ly - wt$$

where $\lambda = \frac{\beta}{sh}$.

• If we take $v_0 = \frac{b}{2a}$ and choose $c = \frac{-2a}{\lambda\sqrt{b^2-4ad}}$ sufficiently small, when $\lambda\xi \to +\infty$, we obtain

$$U(x, y, t) \sim \frac{b^2 - 4ad}{-2a} + \frac{b}{2a}.$$
 (28)

(日)(御)(王)(王)(王)

nac

Introduction	Qualitative Analysis	Approximate Solution	Conclusion	Acknowledgement
		000000		

• Solving equation (27) gives

$$U(x, y, t) = \frac{\frac{1}{c} + \lambda v_0}{\lambda} + ce^{-\lambda\xi}, \quad \xi = hx + ly - wt$$

where $\lambda = \frac{\beta}{sh}$.

• If we take $v_0 = \frac{b}{2a}$ and choose $c = \frac{-2a}{\lambda\sqrt{b^2-4ad}}$ sufficiently small, when $\lambda\xi \to +\infty$, we obtain

$$U(x, y, t) \sim \frac{b^2 - 4ad}{-2a} + \frac{b}{2a}.$$
 (28)

◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ● ●

• It is remarkable that the approximate solution (28) is in agreement with main results described in [7, 8] by the Hardy's theory and the theory of Lie symmetry.

Introduction	Qualitative Analysis	Approximate Solution	Conclusion	Acknowledgement
		000000		

• Solving equation (27) gives

$$U(x, y, t) = \frac{\frac{1}{c} + \lambda v_0}{\lambda} + ce^{-\lambda\xi}, \quad \xi = hx + ly - wt$$

where $\lambda = \frac{\beta}{sh}$.

• If we take $v_0 = \frac{b}{2a}$ and choose $c = \frac{-2a}{\lambda\sqrt{b^2-4ad}}$ sufficiently small, when $\lambda\xi \to +\infty$, we obtain

$$U(x, y, t) \sim \frac{b^2 - 4ad}{-2a} + \frac{b}{2a}.$$
 (28)

◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ● ●

• It is remarkable that the approximate solution (28) is in agreement with main results described in [7, 8] by the Hardy's theory and the theory of Lie symmetry.

Introduction	Qualitative Analysis	Approximate Solution	Conclusion	Acknowledgement
		000000		

• Solving equation (27) gives

$$U(x, y, t) = \frac{\frac{1}{c} + \lambda v_0}{\lambda} + ce^{-\lambda\xi}, \quad \xi = hx + ly - wt$$

where $\lambda = \frac{\beta}{sh}$.

• If we take $v_0 = \frac{b}{2a}$ and choose $c = \frac{-2a}{\lambda\sqrt{b^2-4ad}}$ sufficiently small, when $\lambda\xi \to +\infty$, we obtain

$$U(x, y, t) \sim \frac{b^2 - 4ad}{-2a} + \frac{b}{2a}.$$
 (28)

イロト イポト イヨト イヨト 二日

San

• It is remarkable that the approximate solution (28) is in agreement with main results described in [7, 8] by the Hardy's theory and the theory of Lie symmetry.

[7] Z. Feng, J. Phys. A (Math. Gen.) 36 (2003), 8817-8827.

Introduction	Qualitative Analysis	Approximate Solution	Conclusion	Acknowledgement
		000000		

• Solving equation (27) gives

$$U(x, y, t) = \frac{\frac{1}{c} + \lambda v_0}{\lambda} + ce^{-\lambda\xi}, \quad \xi = hx + ly - wt$$

where $\lambda = \frac{\beta}{sh}$.

• If we take $v_0 = \frac{b}{2a}$ and choose $c = \frac{-2a}{\lambda\sqrt{b^2-4ad}}$ sufficiently small, when $\lambda\xi \to +\infty$, we obtain

$$U(x, y, t) \sim \frac{b^2 - 4ad}{-2a} + \frac{b}{2a}.$$
 (28)

San

• It is remarkable that the approximate solution (28) is in agreement with main results described in [7, 8] by the Hardy's theory and the theory of Lie symmetry.

[7] Z. Feng, J. Phys. A (Math. Gen.) 36 (2003), 8817–8827.
[8] Z. Feng, Nonlinearity, 20 (2007), 343–356.

Introduction	Qualitative Analysis	Approximate Solution	Conclusion	Acknowledgement
00000000		○○○○○●	O	O
Boundedness	of Solutions			

• Note that equation (26) can be rewritten as

$$\frac{1}{U'(\xi)} = \frac{c}{1 - cA(\xi) - c^2 \Phi(\xi)},$$
(29)
where $L \le \Phi(\xi) \le R$.

イロト 不得 トイヨト イヨト 二日

nac

Introduction	Qualitative Analysis	Approximate Solution	Conclusion	Acknowledgement
0000000		○○○○○●	O	O
Boundedness	of Solutions			

• Note that equation (26) can be rewritten as

$$\frac{1}{U'(\xi)} = \frac{c}{1 - cA(\xi) - c^2 \Phi(\xi)},$$
(29)

イロト イポト イヨト イヨト 二日

San

where $L \leq \Phi(\xi) \leq R$.

• When Φ is a quadratic or cubic function or special function of $U(\xi)$, we can analyze equation (29) qualitatively and numerically with classifications. For instance, if Φ is quadratic, we take $v_0 = \frac{b}{2a}$ and choose $c = \frac{-2a}{\lambda\sqrt{b^2-4ad}}$ sufficiently small, we can obtain the solution of the type

$$u(x, y, t) = \frac{3\beta^2 + \gamma + c}{25\alpha s} \operatorname{sech}^2 \xi - \frac{6\beta^2 + \gamma + c}{25\alpha s} \tanh \xi \pm \frac{6\beta^2}{25\alpha s} + C_0.$$

KdV-Burgers Equation Z. Feng Department of Mathematics, University of Texas-Pan American, Edinburg, USA 24/26

Introduction 00000000	Qualitative Analysis	Approximate Solution	Conclusion O	Acknowledgement O
Boundedness	of Solutions			

• Note that equation (26) can be rewritten as

$$\frac{1}{U'(\xi)} = \frac{c}{1 - cA(\xi) - c^2 \Phi(\xi)},$$
(29)

where $L \leq \Phi(\xi) \leq R$.

• When Φ is a quadratic or cubic function or special function of $U(\xi)$, we can analyze equation (29) qualitatively and numerically with classifications. For instance, if Φ is quadratic, we take $v_0 = \frac{b}{2a}$ and choose $c = \frac{-2a}{\lambda\sqrt{b^2-4ad}}$ sufficiently small, we can obtain the solution of the type

$$u(x, y, t) = \frac{3\beta^2 + \gamma + c}{25\alpha s} \operatorname{sech}^2 \xi - \frac{6\beta^2 + \gamma + c}{25\alpha s} \tanh \xi \pm \frac{6\beta^2}{25\alpha s} + C_0.$$

 When Φ is a function with the lower and upper bounds, we can also find bounds of solutions of equation (29) by the comparison principle, which match well with the phase analysis described in [7].

Introduction 00000000	Qualitative Analysis	Approximate Solution	Conclusion	Acknowledgement O
Summary				

• In this talk, we provided a connection between the Abel equation of the first kind, an ordinary differential equation that is cubic in the unknown function, and the Korteweg-de Vries-Burgers equation, a partial differential equation that describes the propagation of waves on liquid-filled elastic tubes. We presented an integral form of the Abel equation with the initial condition.

イロト 不得 トイヨト イヨト 二日

Dac

Introduction	Qualitative Analysis	Approximate Solution	Conclusion	Acknowledgement
			•	
C				
Summary				

- In this talk, we provided a connection between the Abel equation of the first kind, an ordinary differential equation that is cubic in the unknown function, and the Korteweg-de Vries-Burgers equation, a partial differential equation that describes the propagation of waves on liquid-filled elastic tubes. We presented an integral form of the Abel equation with the initial condition.
- By virtue of the integral form and the Banach Contraction Mapping Principle we derived the asymptotic expansion of bounded solutions in the Banach space, and used the asymptotic formula to construct approximate solutions to the Korteweg-de Vries-Burgers equation.

イロト 不得 とくほ とくほとう

DQA

Introduction	Qualitative Analysis	Approximate Solution	Conclusion	Acknowledgement
			•	
C				
Summary				

- In this talk, we provided a connection between the Abel equation of the first kind, an ordinary differential equation that is cubic in the unknown function, and the Korteweg-de Vries-Burgers equation, a partial differential equation that describes the propagation of waves on liquid-filled elastic tubes. We presented an integral form of the Abel equation with the initial condition.
- By virtue of the integral form and the Banach Contraction Mapping Principle we derived the asymptotic expansion of bounded solutions in the Banach space, and used the asymptotic formula to construct approximate solutions to the Korteweg-de Vries-Burgers equation.
- As an example, we presented the asymptotic behavior of traveling wave solution for a 2D KdV-Burgers equation which agrees well with existing results in the literature.

イロト 不得 トイヨト イヨト 二日

DQA

Introduction	Qualitative Analysis	Approximate Solution	Conclusion	Acknowledgement
			•	
C				
Summary				

- In this talk, we provided a connection between the Abel equation of the first kind, an ordinary differential equation that is cubic in the unknown function, and the Korteweg-de Vries-Burgers equation, a partial differential equation that describes the propagation of waves on liquid-filled elastic tubes. We presented an integral form of the Abel equation with the initial condition.
- By virtue of the integral form and the Banach Contraction Mapping Principle we derived the asymptotic expansion of bounded solutions in the Banach space, and used the asymptotic formula to construct approximate solutions to the Korteweg-de Vries-Burgers equation.
- As an example, we presented the asymptotic behavior of traveling wave solution for a 2D KdV-Burgers equation which agrees well with existing results in the literature.
- Under certain conditions, we can also study bounds of traveling wave solutions of KdV-Burgers type equations by the comparison principle.

Introduction 0000000	Qualitative Analysis	Approximate Solution	Conclusion O	Acknowledgement
Acknowledge	ment			

• I would like to thank

KdV-Burgers Equation Z. Feng Department of Mathematics, University of Texas-Pan American, Edinburg, USA 26/26

900

Introduction	Qualitative Analysis	Approximate Solution	Conclusion	Acknowledgement	
				•	
Acknowledgement					

• I would like to thank Xiaoqian Gong

500

Introduction	Qualitative Analysis	Approximate Solution	Conclusion	Acknowledgement
				•
A .1	1			
Acknowled	igement			

• I would like to thank Xiaoqian Gong for discussions and help on computations.

イロト イロト イモト イモト 三日

Sac

Introduction	Qualitative Analysis	Approximate Solution	Conclusion	Acknowledgement
				•
A .1	1			
Acknowled	igement			

- I would like to thank Xiaoqian Gong for discussions and help on computations.
- Thank you.

イロト 不得 とうほう うほう

ъ

nac