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Generalized KdV-Burgers Equation

Generalized Korteweg-de Vries-Burgers equation [1, 2]

ut +

(
δuxx +

β

p
up
)

x
+ αux − µuxx = 0, (1)

where u is a function of x and t, α, β and p > 0 are real constants, µ and
δ are coefficients of dissipation and dispersion, respectively.

The type of such problems arises in modeling waves generated by a
wavemaker in a channel and waves incoming from deep water into
nearshore zones.
The type of such models has the simplest form of wave equation in
which nonlinearity (up)x, dispersion uxxx and dissipation uxx all occur.
— —

[1] J.L. Bona, W.G. Pritchard and L.R. Scott, Philos. Trans. Roy. Soc.
London Ser. A, 302 (1981), 457–510.

[2] J.L.Bona, S.M. Sun and B.Y. Zhang, Dyn. Partial Differ. Equs. 3 (2006),
1–69.
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Burgers Equation and KdV Equation

Choices of δ = α = 0 and p = 2 lead (1) to the Burgers equation [3]:

ut + αuux + βuxx = 0, (2)

with the wave solution

u(x, t) =
2k
α

+
2βk
α

tanh k(x− 2kt).

Choices of α = µ = 0 and p = 2 lead (1) to the KdV equation [4]:

ut + αuux + suxxx = 0, (3)

with the soliton solution [5]

u(x, t) =
12sk2

α
sech2k(x− 4sk2t).

[3] J.M. Burgers, Trans. Roy. Neth. Acad. Sci. 17 (1939), 1–53
[4] D.J. Korteweg and G. de Vries, Phil. Mag. 39 (1895), 422–443.
[5] N.J. Zabusky and M.D. Kruskal, Phys. Rev. Lett. 15 (1965), 240–243.
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Korteweg-de Vries-Burgers Equation

Choices of α = 0 and p = 2 lead equation (1) to the standard form of the
Korteweg-de Vries-Burgers equation [6]:

ut + αuux + βuxx + suxxx = 0. (4)

Solitary wave solutions of equation (4) are as follows [7, 8, 9]:

u(x, t) =
3β2

25αs
sech2Ψ− 6β2

25αs
tanh Ψ± 6β2

25αs
, (5)

where

Ψ =

[
1
2

(
− β

5s
x± 6β3

125s2 t
)]

.

— —
[6] R.S. Johnson, J. Fluid Mech. 42 (1970), 49–60.
[7] Z. Feng, J. Phys. A (Math. Gen.) 36 (2003), 8817–8827.
[8] Z. Feng, Nonlinearity, 20 (2007), 343–356.
[9] Z. Feng and S. Zheng, Z. angew. Math. Phys. 60 (2009), 756–773.
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Figures of Wave Solutions
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Planar Polynomial Systems and Abel Equation

Consider planar polynomial systems of the form

ẋ = −y + p(x, y), ẏ = x + q(x, y) (6)

with homogeneous polynomials p(x, y) and q(x, y) of degree k.
For the Poincaré center problem, setting x = r cos θ, y = r sin θ gives

dr
dθ

=
rkξ(θ)

1 + rk−1η(θ)
, (7)

where ξ and η are polynomials in cos θ and sin θ of degree k + 1.
Making the coordinate transformation

ρ =
rk−1

1 + rk−1η(θ)
,

we get an Abel equation
dρ
dθ

= a(θ)ρ2 + b(θ)ρ3,

where a = (k − 1)ξ + η′ and b = (1− k)ξη.
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Traveling Wave Solution

Assume that equation (1) has the traveling wave solution of the form

u(x, t) = u(ξ), ξ = x− ct,

where c 6= 0 is the wave velocity. Then equation (1) becomes

δu′′′ − µu′′ + (α− c)u′ + βup−1u′ = 0, (8)

where u′ = du/dξ. Integrating equation (8) once gives

u′′ − gu′ − eu− fup − d = 0, (9)

where e = c−α
δ , g = µ

δ , f = − β
pδ and d is an integration constant.

Assume that y = u and u′ = z, then equation (9) is equivalent to{
y′ = z,
z′ = ey + gz + fyp + d.

(10)
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Global Structure of p = 2
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Transformed to Abel Equation

It follows from system (10) that

dz
dy

=
ey + gz + fyp + d

z
. (11)

Let z = r−1. Equation (11) reduces to

dr
dy

= a(y)r2 + b(y)r3, (12)

where a(y) = −g and b(y) = −(ey + fyp + d).
Question: Under what condition one can determine the number of closed
solutions of the Abel equation (12).
Open Problem: There have been two longstanding problems, called the
Poincaré center-focus problem and the local Hilbert 16th problem. Both
are closely related to the Bautin quantities and the Bautin ideal of the
Abel equation.
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Integral Form

Consider the generalized Abel equation

r′ = a(t)r2 + b(t)rn, r(t0) = c, t ∈ [t0, t1], n ≥ 3. (13)

Dividing both sides of equation (13) by r2 gives

r′

r2 = a(t) + b(t)rn−2. (14)

Integrating equation (14) from t0 to t yields

r(t) =
c

1− cA(t)− c
∫ t

t0
b(τ)rn−2dτ

, (15)

where A(t) =
∫ t

t0
a(τ)dτ .

Rewrite equation (15) as

r(t) = c
(

1 + A(t) + r(t)
∫ t

t0
b(τ)rn−2dτ

)
. (16)
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A Nonlinear Operator

Let C[0, 1] denote the Banach space of all continuous functions on the
interval [0, 1] with the norm ‖f‖ = max0≤t≤1 |f (t)|. We define the
operator [10]:

Tc : C[0, 1]→ C[0, 1],

Tc(f )(t)
def
=

c
1− cA(t)− c

∫ t
0 b(τ)f (τ)n−2dτ

,

for given a, b ∈ C[0, 1] and c ∈ R. Obviously, Tc is well defined on an
arbitrary bounded set of C[0, 1] if c is suitably small. Let us first observe
some useful properties of Tc.
— —

[10] Z. Feng, Z. angew. Math. Phys. under review.
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Property of Our Operator

Lemma (1)

For f ∈ C[0, 1] and c ∈ R with ‖f‖ ≤ M and |c| < c0
def
= (‖a‖+ ‖b‖Mn−2)−1,

Tc(f ) is well defined and differentiable, and satisfies

d
dt

Tc(f )(t) = a(t)[Tc(f )(t)]2 + b(t)[Tc(f )(t)]2f (t)n−2.

Furthermore, we have an identity

Tc(f )(t)− Tc(g)(t) = Tc(f )(t)Tc(g)(t)
∫ t

0
b(τ)(f (τ)n−2 − g(τ)n−2)dτ,

0 ≤ t ≤ 1

for arbitrary f , g ∈ C[0, 1] and c ∈ R with ‖f‖, ‖g‖ ≤ M and |c| < c0.
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Outline of the Proof

Step 1: well-defined

1− cA(t)− c
∫ t

0
b(τ)f (τ)n−2dτ = 0⇒

|c| ≥ 1
|A(t)|+

∫ t
0 |b(τ)f (τ)n−2| dτ

≥ 1
‖a‖+ ‖b‖Mn−2 .

Step 2: A direct calculation gives

d
dt

Tc(f )(t) =
−c[−ca(t)− cb(t)f (t)n−2]

(1− cA(t)− c
∫ t

0 b(τ)f (τ)n−2dτ)2

=
c2a(t)

(1− cA(t)− c
∫ t

0 b(τ)f (τ)n−2dτ)2
+

c2b(t)f (t)n−2

(1− cA(t)− c
∫ t

0 b(τ)f (τ)n−2dτ)2

Tc(f )(t)− Tc(g)(t) =
c

H(f )
· c

H(g)
·
∫ t

0
b(τ)(f (τ)n−2 − g(τ)n−2)dτ

KdV-Burgers Equation Z. Feng Department of Mathematics, University of Texas-Pan American, Edinburg, USA 14 / 26



Introduction Qualitative Analysis Approximate Solution Conclusion Acknowledgement

Outline of the Proof

Step 1: well-defined

1− cA(t)− c
∫ t

0
b(τ)f (τ)n−2dτ = 0⇒

|c| ≥ 1
|A(t)|+

∫ t
0 |b(τ)f (τ)n−2| dτ

≥ 1
‖a‖+ ‖b‖Mn−2 .

Step 2: A direct calculation gives

d
dt

Tc(f )(t) =
−c[−ca(t)− cb(t)f (t)n−2]

(1− cA(t)− c
∫ t

0 b(τ)f (τ)n−2dτ)2

=
c2a(t)

(1− cA(t)− c
∫ t

0 b(τ)f (τ)n−2dτ)2
+

c2b(t)f (t)n−2

(1− cA(t)− c
∫ t

0 b(τ)f (τ)n−2dτ)2

Tc(f )(t)− Tc(g)(t) =
c

H(f )
· c

H(g)
·
∫ t

0
b(τ)(f (τ)n−2 − g(τ)n−2)dτ
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Lemma 2

Lemma (2)

Let c1 = (‖a‖+ ‖b‖+ 1)−1. Then we have

‖Tcf‖ ≤ 1 if ‖f‖ ≤ 1 and |c| ≤ c1.

Outline of the Proof.
If ‖f‖ ≤ 1 and |c| ≤ c1, then we have

‖Tcf‖ ≤ |c|
1− |c| (‖a‖+ ‖b‖‖f‖n−2)

≤ |c|
1− |c| (‖a‖+ ‖b‖)

≤ 1.

The conclusion follows.
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Lemma 3

Lemma (3)

Let c2 = (
√

(n− 2)‖b‖+ ‖a‖+ ‖b‖+ 1)−1. If |c| ≤ c2, then Tc is a
contraction mapping on the close unit ball B1 = {f ∈ C[0, 1]| ‖f‖ ≤ 1} of
C[0, 1].

Outline of the Proof.
It follows from Lemmas 1 and 2 that

‖Tc(f )(t)− Tc(g)(t)‖ ≤ ‖Tc(f )‖‖Tc(g)‖‖b‖‖f n−2 − gn−2‖
= C‖(f − g)(f n−3 + f n−4g + · · ·+ fgn−4 + gn−3)‖
≤ (n− 2)c‖f − g‖,

where

c
def
=

(
|c|

1− |c| (‖a‖+ ‖b‖)

)2

‖b‖.
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Theorem 1

Theorem (1)

For given a, b ∈ C[0, 1] and c ∈ R with
|c| ≤ (

√
(n− 2)‖b‖+ ‖a‖+ ‖b‖+ 1)−1, the solution r(t, c) of equation (1)

with r(0, c) = c can be uniformly approximated by an iterated sequence
{Tn

c (f )(t)}:
r(t, c) = lim

n→∞
Tn

c (f )(t), 0 ≤ t ≤ 1, (17)

that is,

r(t, c) =
c

1− cA(t)− cn−1
∫ t

0
b(t1)dt1

1−cA(t1)−cn−1
∫ t1

0
b(t2)dt2

1−cA(t2)−cn−1 ∫ t2
0 ···

(18)

for arbitrary f ∈ C[0, 1] with ‖f‖ ≤ 1. Furthermore, the following error
estimate holds

r(t, c)− Tn
c (f )(t) = O(c2n).
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Theorem 2: Case of n = 3

Denote
M = max

t∈[0,1]
|a(t)± b(t)|.

Theorem (2)

Suppose a, b ∈ C[0, 1] and c ∈ R with

|c| ≤ max{(
√
‖b‖+ ‖a‖+ ‖b‖+ 1)−1, (2M)−1}.

Then, in formula (18), the following part is bounded

b(t1)

1− cA(t1)− c2
∫ t1

0
b(t2)dt2

1−cA(t2)−c2
∫ t2

0 ···

=
1
c
· b(t1) · c

1− cA(t1)− c2
∫ t1

0 b(t2) · c
1−cA(t2)−c2

∫ t2
0 ···

dt2
.
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2D Korteweg-de Vries-Burgers Equation

Consider the 2D Korteweg-de Vries-Burgers equation:

(Ut + αUUx + βUxx + sUxxx)x + γUyy = 0, (19)

where α, β, s, and γ are constants and αβsγ 6= 0.

Assume that equation (19) has an exact solution in the form

U(x, y, t) = U(ξ), ξ = hx + ly− wt. (20)

Substitution of (20) into equation (19) and performing integration twice
yields

U
′′
(ξ) + λU

′
(ξ) + aU2(ξ) + bU(ξ) + d = 0, (21)

where v = U(ξ) ∈ [v0, v1], λ = β
sh , a = α

2sh2 , b = γl2−wh
sh4 and d = − C

sh4 .
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Resultant Abel Equation

Let v = U(ξ) and y = U
′
(ξ). Equation (21) becomes

dy
dv

y + λy + av2 + bv + d = 0. (22)

Using z = 1
y yields

dz
dv

= λz2 + (av2 + bv + d)z3, z(v0) =
1

U′(ξ0)
= c. (23)

Let η = v−v0
v1−v0

, then η ∈ [0, 1] and v = v0 + (v1 − v0)η. So equation (23)
reduces to

r
′

= h(η)r2 + k(η)r3, r(0) = c, (24)

where h(η), k(η) ∈ C[0, 1], and

h(η) = (v1 − v0)λ,

k(η) = (v1 − v0)(av2 + bv + d).

KdV-Burgers Equation Z. Feng Department of Mathematics, University of Texas-Pan American, Edinburg, USA 20 / 26



Introduction Qualitative Analysis Approximate Solution Conclusion Acknowledgement

Resultant Abel Equation

Let v = U(ξ) and y = U
′
(ξ). Equation (21) becomes

dy
dv

y + λy + av2 + bv + d = 0. (22)

Using z = 1
y yields

dz
dv

= λz2 + (av2 + bv + d)z3, z(v0) =
1

U′(ξ0)
= c. (23)

Let η = v−v0
v1−v0

, then η ∈ [0, 1] and v = v0 + (v1 − v0)η. So equation (23)
reduces to

r
′

= h(η)r2 + k(η)r3, r(0) = c, (24)

where h(η), k(η) ∈ C[0, 1], and

h(η) = (v1 − v0)λ,

k(η) = (v1 − v0)(av2 + bv + d).

KdV-Burgers Equation Z. Feng Department of Mathematics, University of Texas-Pan American, Edinburg, USA 20 / 26



Introduction Qualitative Analysis Approximate Solution Conclusion Acknowledgement

Resultant Abel Equation

Let v = U(ξ) and y = U
′
(ξ). Equation (21) becomes

dy
dv

y + λy + av2 + bv + d = 0. (22)

Using z = 1
y yields

dz
dv

= λz2 + (av2 + bv + d)z3, z(v0) =
1

U′(ξ0)
= c. (23)

Let η = v−v0
v1−v0

, then η ∈ [0, 1] and v = v0 + (v1 − v0)η.

So equation (23)
reduces to

r
′

= h(η)r2 + k(η)r3, r(0) = c, (24)

where h(η), k(η) ∈ C[0, 1], and

h(η) = (v1 − v0)λ,

k(η) = (v1 − v0)(av2 + bv + d).

KdV-Burgers Equation Z. Feng Department of Mathematics, University of Texas-Pan American, Edinburg, USA 20 / 26



Introduction Qualitative Analysis Approximate Solution Conclusion Acknowledgement

Resultant Abel Equation

Let v = U(ξ) and y = U
′
(ξ). Equation (21) becomes

dy
dv

y + λy + av2 + bv + d = 0. (22)

Using z = 1
y yields

dz
dv

= λz2 + (av2 + bv + d)z3, z(v0) =
1

U′(ξ0)
= c. (23)

Let η = v−v0
v1−v0

, then η ∈ [0, 1] and v = v0 + (v1 − v0)η. So equation (23)
reduces to

r
′

= h(η)r2 + k(η)r3, r(0) = c, (24)

where h(η), k(η) ∈ C[0, 1], and

h(η) = (v1 − v0)λ,

k(η) = (v1 − v0)(av2 + bv + d).

KdV-Burgers Equation Z. Feng Department of Mathematics, University of Texas-Pan American, Edinburg, USA 20 / 26



Introduction Qualitative Analysis Approximate Solution Conclusion Acknowledgement

Resultant Abel Equation

Let v = U(ξ) and y = U
′
(ξ). Equation (21) becomes

dy
dv

y + λy + av2 + bv + d = 0. (22)

Using z = 1
y yields

dz
dv

= λz2 + (av2 + bv + d)z3, z(v0) =
1

U′(ξ0)
= c. (23)

Let η = v−v0
v1−v0

, then η ∈ [0, 1] and v = v0 + (v1 − v0)η. So equation (23)
reduces to

r
′

= h(η)r2 + k(η)r3, r(0) = c, (24)

where h(η), k(η) ∈ C[0, 1], and

h(η) = (v1 − v0)λ,

k(η) = (v1 − v0)(av2 + bv + d).

KdV-Burgers Equation Z. Feng Department of Mathematics, University of Texas-Pan American, Edinburg, USA 20 / 26



Introduction Qualitative Analysis Approximate Solution Conclusion Acknowledgement

Solution to Equation (24)

By virtue of Theorem 1, if |c| ≤ (
√
‖k‖+ ‖h‖+ ‖k‖+ 1)−1, the

solution to equation (24) is

r(η) = lim
n→+∞

Tn
c (w)(η), (25)

where 0 ≤ η ≤ 1 for any w ∈ C[0, 1] with ‖w‖ ≤ 1, and

Tc(w) =
c

1− cH(η)− c
∫ η

0 k(x)w(x)n−2dx

where

H(η) =

∫ η

0
h(x) dx =

∫ η

0
(v1 − v0)λ dx = (v1 − v0)λη,

k(x) = (v1 − v0)
(
a(v0 + (v1 − v0)x)2 + b(v0 + (v1 − v0)x) + d

)
.
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Approximate Solution to 2D-KdV-Burgers Equation

Recall that r = 1
y , y = U

′
(ξ), η = v−v0

v1−v0
and v = U(ξ). When conditions

of Theorem 1 are fulfilled, we have

1
U′(ξ)

=
c

1− cA(ξ)− c2
∫ ξ

0
b(t1)dt1

1−cA(t1)−c2
∫ t1

0
b(t2)dt2

1−cA(t2)−c2 ∫ t2
0 ···

. (26)

When c is small, according to Theorem 2, the coefficient of c2 is
bounded. So we can drop the term containing c2 and get

U
′
(ξ) ≈ 1− c(v1 − v0)λη

c

=
1− cλ(U(ξ)− v0)

c
.

That is,

U
′
(ξ) + λU(ξ) =

1
c

+ λv0. (27)
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Approximate Solution to 2D KdV-Burgers Equation

Solving equation (27) gives

U(x, y, t) =
1
c + λv0

λ
+ ce−λξ, ξ = hx + ly− wt

where λ = β
sh .

If we take v0 = b
2a and choose c = −2a

λ
√

b2−4ad
sufficiently small, when

λξ → +∞, we obtain

U(x, y, t) ∼ b2 − 4ad
−2a

+
b
2a
. (28)

It is remarkable that the approximate solution (28) is in agreement with
main results described in [7, 8] by the Hardy’s theory and the theory of
Lie symmetry.
— —

[7] Z. Feng, J. Phys. A (Math. Gen.) 36 (2003), 8817–8827.
[8] Z. Feng, Nonlinearity, 20 (2007), 343–356.
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sufficiently small, when

λξ → +∞, we obtain

U(x, y, t) ∼ b2 − 4ad
−2a

+
b
2a
. (28)

It is remarkable that the approximate solution (28) is in agreement with
main results described in [7, 8] by the Hardy’s theory and the theory of
Lie symmetry.
— —

[7] Z. Feng, J. Phys. A (Math. Gen.) 36 (2003), 8817–8827.

[8] Z. Feng, Nonlinearity, 20 (2007), 343–356.
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Boundedness of Solutions

Note that equation (26) can be rewritten as

1
U′(ξ)

=
c

1− cA(ξ)− c2Φ(ξ)
, (29)

where L ≤ Φ(ξ) ≤ R.

When Φ is a quadratic or cubic function or special function of U(ξ), we
can analyze equation (29) qualitatively and numerically with
classifications. For instance, if Φ is quadratic, we take v0 = b

2a and
choose c = −2a

λ
√

b2−4ad
sufficiently small, we can obtain the solution of

the type

u(x, y, t) =
3β2 + γ + c

25αs
sech2ξ − 6β2 + γ + c

25αs
tanh ξ ± 6β2

25αs
+ C0.

When Φ is a function with the lower and upper bounds, we can also find
bounds of solutions of equation (29) by the comparison principle, which
match well with the phase analysis described in [7].
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Summary

In this talk, we provided a connection between the Abel equation of the
first kind, an ordinary differential equation that is cubic in the unknown
function, and the Korteweg-de Vries-Burgers equation, a partial
differential equation that describes the propagation of waves on
liquid-filled elastic tubes. We presented an integral form of the Abel
equation with the initial condition.

By virtue of the integral form and the Banach Contraction Mapping
Principle we derived the asymptotic expansion of bounded solutions in
the Banach space, and used the asymptotic formula to construct
approximate solutions to the Korteweg-de Vries-Burgers equation.
As an example, we presented the asymptotic behavior of traveling wave
solution for a 2D KdV-Burgers equation which agrees well with existing
results in the literature.
Under certain conditions, we can also study bounds of traveling wave
solutions of KdV-Burgers type equations by the comparison principle.
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