On the genericity of non-degenerate spectral edges

Ngoc Do, Peter Kuchment, Frank Sottile
Texas A & M University

Texas Analysis and Mathematical Physics Symposium
November 22nd, 2014

N. Do, P. Kuchment, F. Sottile Texas A&M University On the genericity of non-degenerate spectral edges



Conjecture and graph approach Background
Conjecture
Graph approach

A bit about Floquet-Bloch theory

P. Kuchment, F. Sottile Texas A&M University On the genericity of non-degenerate spectral edges



Conjecture and graph approach Background
Conjecture
Graph approach

A bit about Floquet-Bloch theory

e Floquet-Bloch theory: tool to study periodic differential operators

o, P. Kuchment, F. Sottile Texas A&M University On the genericity of non-degenerate spectral edges



Conjecture and graph approach Background
Conjecture
Graph approach

A bit about Floquet-Bloch theory

e Floquet-Bloch theory: tool to study periodic differential operators

e Hamiltonian H = —A + V(x)
V(x) = V(x + ¢;) for a basis e = {e;}!_; € R"

N. Do, P. Kuchment, F. Sottile Texas A&M University On the genericity of non-degenerate spectral edges



Conjecture and graph approach Background
Conjecture
Graph approach

A bit about Floquet-Bloch theory

e Floquet-Bloch theory: tool to study periodic differential operators
e Hamiltonian H = —A + V(x)

V(x) = V(x + ¢;) for a basis e = {e;}!_; € R"

e Bloch-Hamiltonian: H? = —A + V(x)

Floquet condition: f(x + pe) = f(x)e?

p=A{pi}f_,€2" 0={0;}_, € B, B=[—m,7]" - Brillouin zone

N. Do, P. Kuchment, F. Sottile Texas A&M University On the genericity of non-degenerate spectral edges



Conjecture and graph approach Background
Conjecture
Graph approach

A bit about Floquet-Bloch theory

e Floquet-Bloch theory: tool to study periodic differential operators
e Hamiltonian H = —A + V(x)
V(x) = V(x + ¢;) for a basis e = {e;}!_; € R"

e Bloch-Hamiltonian: H? = —A + V(x)
Floquet condition: f(x + pe) = f(x)e?
p=A{pi}f_,€2" 0={0;}_, € B, B=[—m,7]" - Brillouin zone

o o(H?) - discrete spectrum

N. Do, P. Kuchment, F. Sottile Texas A&M University On the genericity of non-degenerate spectral edges



Conjecture and graph approach Background
Conjecture
Graph approach

A bit about Floquet-Bloch theory

e Floquet-Bloch theory: tool to study periodic differential operators
e Hamiltonian H = —A + V(x)

V(x) = V(x + ¢;) for a basis e = {e;}!_; € R"

e Bloch-Hamiltonian: H? = —A + V(x)

Floquet condition: f(x + pe) = f(x)e?

p=A{pi}f_,€2" 0={0;}_, € B, B=[—m,7]" - Brillouin zone

o o(H?) - discrete spectrum

@ Direct integral decomposition H = @ H?
0cB

o(H) = o(H)

0eB

N. Do, P. Kuchment, F. Sottile Texas A&M University On the genericity of non-degenerate spectral edges



Conjecture and graph approach Background
Conjecture
Graph approach

A bit about Floquet-Bloch theory

e Floquet-Bloch theory: tool to study periodic differential operators
e Hamiltonian H = —A + V(x)
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e Bloch-Hamiltonian: H? = —A + V(x)
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o o(H?) - discrete spectrum

@ Direct integral decomposition H = @ H?
0cB

o(H) = o(H)

0eB

Periodic spectral prob. — spectral prob. on fundamental domain
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Definition

An extremum of dispersion relation is degenerate if its Hessian is
zero.
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The dispersion relation of a generic periodic Schrédinger operator
has only non-degenerate extrema

Motivation: Anderson localization, effective masses, etc

e The bottom of the spectrum of periodic Schrodinger operator is
non-degenerate, W. Kirsch and B. Simon, J. Funct. Anal. '87

e Spectral edges of generic Schrodinger operator are extrema of
single band function, F. Klopp and J. Ralston, Meth. Appl. Anal.
'00
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Why graph approach?7?
@ Simple

@ Highly effective
(P. Exner, P. Kuchment, O. Post, J. Rubinstein, M.
Schatzman, H. Zeng, etc)
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General settings and result Result
Proof outline

Structures and Laplacians

A simple class of discrete graphs
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Structures and Laplacians

A simple class of discrete graphs

Luf(u)= Y pe(f(u) = f(v)),u € R

e=(u,v)eE,
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Results

The dispersion relation of a generic operator L, i € R, has only
non-degenerate extrema.
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General settings and result Result
Proof outline

Results

The dispersion relation of a generic operator L, i € R, has only
non-degenerate extrema.

The set of p, ;1 € R®, such that L,, has degenerate spectral edges is
of codimension 1.

icity of non-degenerate spectral edges
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General settings
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Proof outline

Proof outline

@ Obtain set A that “describes” all degenerate spectral edges
(Floquet-Bloch theory)

@ Prove that codim(A) = 4
(numerical algebraic geometry: Bertini "M software)

@ Project A to onto the space of weights
(Saidenberg-Tarski theorem)
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Future plans

Future plans

Discrete case — Quantum graph case — Graph-like thin domain

@ Eliminate numerical proof part

@ Increase number of vertices inside the fundamental domain to
arbitrarily finitely many vertices

@ Bootstrap to quantum graph
@ Bootstrap to graph-like thin domain
e Continuous (?77)
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Future plans

Thank you!
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