On the genericity of non-degenerate spectral edges

Ngoc Do, Peter Kuchment, Frank Sottile Texas A & M University

Texas Analysis and Mathematical Physics Symposium November 22nd, 2014

Background Conjecture Graph approach

A bit about Floquet-Bloch theory

N. Do, P. Kuchment, F. Sottile Texas A&M University On the genericity of non-degenerate spectral edges

Background Conjecture Graph approach

A bit about Floquet-Bloch theory

• Floquet-Bloch theory: tool to study periodic differential operators

Background Conjecture Graph approach

A bit about Floquet-Bloch theory

- Floquet-Bloch theory: tool to study periodic differential operators
- Hamiltonian $H = -\Delta + V(x)$ $V(x) = V(x + e_i)$ for a basis $e = \{e_i\}_{i=1}^n \in \mathbb{R}^n$

Background Conjecture Graph approach

A bit about Floquet-Bloch theory

• Floquet-Bloch theory: tool to study periodic differential operators

Background Conjecture Graph approach

A bit about Floquet-Bloch theory

- Floquet-Bloch theory: tool to study periodic differential operators
- Hamiltonian $H = -\Delta + V(x)$ $V(x) = V(x + e_i)$ for a basis $e = \{e_i\}_{i=1}^n \in \mathbb{R}^n$ • Bloch-Hamiltonian: $H^{\theta} = -\Delta + V(x)$ Floquet condition: $f(x + pe) = f(x)e^{ip\theta}$ $p = \{p_i\}_{i=1}^n \in \mathbb{Z}^n, \ \theta = \{\theta_i\}_{i=1}^n \in B, \ B = [-\pi, \pi]^n$ - Brillouin zone
 - $\sigma(H^{\theta})$ discrete spectrum

Background Conjecture Graph approach

A bit about Floquet-Bloch theory

• Floquet-Bloch theory: tool to study periodic differential operators

• Direct integral decomposition $H = \bigoplus_{\theta \in B} H^{\theta}$

$$\sigma(H) = \bigcup_{\theta \in B} \sigma(H^{\theta})$$

Background Conjecture Graph approach

A bit about Floquet-Bloch theory

- Floquet-Bloch theory: tool to study periodic differential operators
- Hamiltonian H = -Δ + V(x) V(x) = V(x + e_i) for a basis e = {e_i}ⁿ_{i=1} ∈ ℝⁿ
 Bloch-Hamiltonian: H^θ = -Δ + V(x) Floquet condition: f(x + pe) = f(x)e^{ipθ} p = {p_i}ⁿ_{i=1} ∈ ℤⁿ, θ = {θ_i}ⁿ_{i=1} ∈ B, B = [-π, π]ⁿ - Brillouin zone
 σ(H^θ) - discrete spectrum
 Direct integral decomposition H = ⊕_{θ∈B} H^θ

$$\sigma(H) = \bigcup_{\theta \in B} \sigma(H^{\theta})$$

Periodic spectral prob. \rightarrow spectral prob. on fundamental domain

Background Conjecture Graph approach

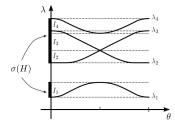
A bit about Floquet-Bloch theory (cont.)

• Dispersion relation - multi-valued function: $\theta \rightarrow \{\lambda_j(\theta)\}$

Background Conjecture Graph approach

A bit about Floquet-Bloch theory (cont.)

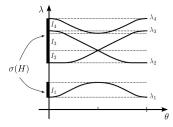
• Dispersion relation - multi-valued function: $\theta \rightarrow \{\lambda_j(\theta)\}$



Background Conjecture Graph approach

A bit about Floquet-Bloch theory (cont.)

• Dispersion relation - multi-valued function: $\theta \rightarrow \{\lambda_j(\theta)\}$



Definition

An extremum of dispersion relation is degenerate if its Hessian is zero.

N. Do, P. Kuchment, F. Sottile Texas A&M University On the genericity of non-degenerate spectral edges

Background Conjecture Graph approach

Conjecture

Conjecture

The dispersion relation of a generic periodic Schrödinger operator has only non-degenerate extrema

Background Conjecture Graph approach

Conjecture

Conjecture

The dispersion relation of a generic periodic Schrödinger operator has only non-degenerate extrema

Motivation: Anderson localization, effective masses, etc

Background Conjecture Graph approach

Conjecture

Conjecture

The dispersion relation of a generic periodic Schrödinger operator has only non-degenerate extrema

Motivation: Anderson localization, effective masses, etc

• The bottom of the spectrum of periodic Schrödinger operator is non-degenerate, W. Kirsch and B. Simon, J. Funct. Anal. '87

Background Conjecture Graph approach

Conjecture

Conjecture

The dispersion relation of a generic periodic Schrödinger operator has only non-degenerate extrema

Motivation: Anderson localization, effective masses, etc

- The bottom of the spectrum of periodic Schrödinger operator is non-degenerate, W. Kirsch and B. Simon, J. Funct. Anal. '87
- Spectral edges of generic Schrödinger operator are extrema of single band function, F. Klopp and J. Ralston, Meth. Appl. Anal. '00

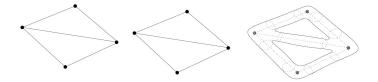
Background Conjecture Graph approach

Graph approach and some justification

Background Conjecture Graph approach

Graph approach and some justification

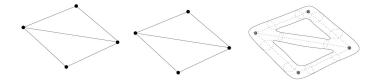
 $\mathsf{Discrete\ graph} \to \mathsf{Quantum\ graph} \to \mathsf{Graph-like\ thin\ domain}$



Background Conjecture Graph approach

Graph approach and some justification

 $\mathsf{Discrete\ graph} \to \mathsf{Quantum\ graph} \to \mathsf{Graph-like\ thin\ domain}$

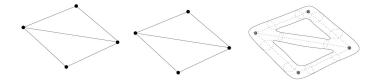


Why graph approach???

Background Conjecture Graph approach

Graph approach and some justification

 $\mathsf{Discrete\ graph} \to \mathsf{Quantum\ graph} \to \mathsf{Graph-like\ thin\ domain}$



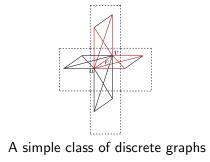
Why graph approach???

- Simple
- Highly effective

(P. Exner, P. Kuchment, O. Post, J. Rubinstein, M. Schatzman, H. Zeng, etc)

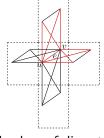
General settings Result Proof outline

Structures and Laplacians



General settings Result Proof outline

Structures and Laplacians



A simple class of discrete graphs

$$L_{\mu}f(u) = \sum_{e=(u,v)\in E_u} \mu_e(f(u) - f(v)), \mu \in \mathbb{R}^9$$

General settings Result Proof outline

Results

Theorem

The dispersion relation of a generic operator $L_{\mu}, \mu \in \mathbb{R}^9$, has only non-degenerate extrema.

General settings Result Proof outline

Results

Theorem

The dispersion relation of a generic operator $L_{\mu}, \mu \in \mathbb{R}^9$, has only non-degenerate extrema.

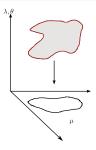
The set of $\mu, \mu \in \mathbb{R}^9$, such that L_{μ} has degenerate spectral edges is of codimension 1.

 Conjecture and graph approach
 General settings

 General settings and result
 Result

 Future plans
 Proof outline

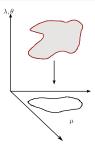
Proof outline



 Conjecture and graph approach General settings and result Future plans
 General settings Result

 Proof outline

Proof outline

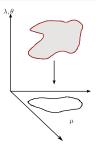


• Obtain set A that "describes" all degenerate spectral edges (Floquet-Bloch theory)

 Conjecture and graph approach General settings and result Future plans
 General settings Result

 Proof outline

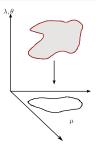
Proof outline



- Obtain set A that "describes" all degenerate spectral edges (Floquet-Bloch theory)
- Prove that codim(A) = 4 (numerical algebraic geometry: BertiniTM software)

Conjecture and graph approach General settings and result Future plans General settings Proof outline

Proof outline



- Obtain set A that "describes" all degenerate spectral edges (Floquet-Bloch theory)
- Prove that codim(A) = 4 (numerical algebraic geometry: BertiniTM software)
- Project A to onto the space of weights (Saidenberg-Tarski theorem)

Future plans

 $\mathsf{Discrete\ case} \to \mathsf{Quantum\ graph\ case} \to \mathsf{Graph-like\ thin\ domain}$

• Eliminate numerical proof part

- Eliminate numerical proof part
- Increase number of vertices inside the fundamental domain to arbitrarily finitely many vertices

- Eliminate numerical proof part
- Increase number of vertices inside the fundamental domain to arbitrarily finitely many vertices
- Bootstrap to quantum graph

- Eliminate numerical proof part
- Increase number of vertices inside the fundamental domain to arbitrarily finitely many vertices
- Bootstrap to quantum graph
- Bootstrap to graph-like thin domain

- Eliminate numerical proof part
- Increase number of vertices inside the fundamental domain to arbitrarily finitely many vertices
- Bootstrap to quantum graph
- Bootstrap to graph-like thin domain
- Continuous (???)

Thank you!

N. Do, P. Kuchment, F. Sottile Texas A&M University On the genericity of non-degenerate spectral edges