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General settings and result

Future plans

Background
Conjecture
Graph approach

A bit about Floquet-Bloch theory

• Floquet-Bloch theory: tool to study periodic differential operators

• Hamiltonian H = −∆ + V (x)
V (x) = V (x + ei ) for a basis e = {ei}ni=1 ∈ Rn

• Bloch-Hamiltonian: Hθ = −∆ + V (x)
Floquet condition: f (x + pe) = f (x)e ipθ

p = {pi}ni=1 ∈ Zn, θ = {θi}ni=1 ∈ B, B = [−π, π]n - Brillouin zone

σ(Hθ) - discrete spectrum

Direct integral decomposition H =
⊕
θ∈B

Hθ

σ(H) =
⋃
θ∈B

σ(Hθ)

Periodic spectral prob. → spectral prob. on fundamental domain
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A bit about Floquet-Bloch theory (cont.)

• Dispersion relation - multi-valued function: θ → {λj(θ)}

Definition

An extremum of dispersion relation is degenerate if its Hessian is
zero.
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Conjecture

The dispersion relation of a generic periodic Schrödinger operator
has only non-degenerate extrema

Motivation: Anderson localization, effective masses, etc

• The bottom of the spectrum of periodic Schrödinger operator is
non-degenerate, W. Kirsch and B. Simon, J. Funct. Anal. ’87

• Spectral edges of generic Schrödinger operator are extrema of
single band function, F. Klopp and J. Ralston, Meth. Appl. Anal.
’00
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Graph approach and some justification

Discrete graph → Quantum graph → Graph-like thin domain

Why graph approach???

Simple

Highly effective
(P. Exner, P. Kuchment, O. Post, J. Rubinstein, M.
Schatzman, H. Zeng, etc)
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General settings
Result
Proof outline

Structures and Laplacians

A simple class of discrete graphs

Lµf (u) =
∑

e=(u,v)∈Eu

µe(f (u)− f (v)), µ ∈ R9
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Results

Theorem

The dispersion relation of a generic operator Lµ, µ ∈ R9, has only
non-degenerate extrema.

The set of µ, µ ∈ R9, such that Lµ has degenerate spectral edges is
of codimension 1.
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Proof outline

Obtain set A that “describes” all degenerate spectral edges
(Floquet-Bloch theory)

Prove that codim(A) = 4
(numerical algebraic geometry: BertiniTMsoftware)

Project A to onto the space of weights
(Saidenberg-Tarski theorem)
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Discrete case → Quantum graph case → Graph-like thin domain

Eliminate numerical proof part

Increase number of vertices inside the fundamental domain to
arbitrarily finitely many vertices

Bootstrap to quantum graph

Bootstrap to graph-like thin domain

Continuous (???)
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Thank you!
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