Finding the Stokes Wave: Low Steepness to Highest Wave

Sergey Dyachenko*, Pavel Lushnikov and Alexander Korotkevich

Department of Mathematics University of Arizona, Tucson, Arizona, 85721

sdyachen@math.arizona.edu

TexAMP 2014 November 21-23

伺 ト イ ヨ ト イ ヨ ト

Outline

- Formulation of Problem
- Hamiltonian Formalism
- Equations of Motion
- Finite Amplitude Travelling Waves
- 2 Numerical Simulations and More
 - Travelling Wave solution a.k.a Stokes Wave
 - Parameter Oscillation
 - Evolution Problem

Formulation of Problem Hamiltonian Formalism Equations of Motion Finite Amplitude Travelling Waves

- **→** → **→**

Contents

- Formulation of Problem
- Hamiltonian Formalism
- Equations of Motion
- Finite Amplitude Travelling Waves
- Travelling Wave solution a.k.a Stokes Wave
- Parameter Oscillation
- Evolution Problem

Formulation of Problem Hamiltonian Formalism Equations of Motion Finite Amplitude Travelling Waves

イロト イポト イヨト イヨト

Figure : Nearly plane waves in the wake of a boat in Maas-Waal Canal.

Formulation of Problem Hamiltonian Formalism Equations of Motion Finite Amplitude Travelling Waves

/□ ▶ < 글 ▶ < 글

Equations of free surface hydrodynamics

Consider a potential flow of ideal fluid in a seminfinite strip $(x, y) \in [-\pi, \pi]x[-\infty, \eta(x, t)]$ periodic in x-variable.

$$abla^2 \Phi = 0$$

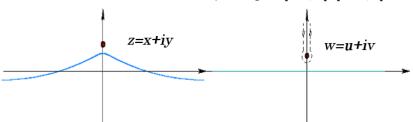
with BC and domain defined by:

$$\frac{\partial \eta}{\partial t} + \left(-\frac{\partial \eta}{\partial x} \frac{\partial \Phi}{\partial x} + \frac{\partial \Phi}{\partial y} \right) \Big|_{y=\eta(x,t)} = 0$$
$$\left(\frac{\partial \Phi}{\partial t} + \frac{1}{2} (\nabla \Phi)^2 \right) \Big|_{y=\eta(x,t)} + g\eta = 0$$
$$\frac{\partial \Phi}{\partial y} \Big|_{y\to-\infty} = 0$$

Formulation of Problem Hamiltonian Formalism Equations of Motion Finite Amplitude Travelling Waves

Conformal Map

We introduce the conformal map $z(w, t) = w + \tilde{z}(w, t)$, so that in new variable w = u + iv fluid occupies region $[-\pi, \pi]x[-\infty, 0]$.



Analyticity of a function $\tilde{z}(w)$ in \mathbb{C}^- imposes a relation between real and imaginary parts of \tilde{z} on the free surface v = 0:

$$\tilde{z}(u) = \tilde{x}(u) + iy(u) = \tilde{x}(u) + i\hat{H}\tilde{x}(u) = 2\hat{P}\tilde{x}$$

where \hat{H} is Hilbert operator, and $\hat{P} = \frac{1}{2} \left(1 + i\hat{H} \right)$ is projector.

Hamiltonian

Formulation of Problem Hamiltonian Formalism Equations of Motion Finite Amplitude Travelling Waves

In the absence of viscosity, free surface hydrodynamics constitute a Hamiltonian system with:

$$\mathcal{H} = \frac{1}{2} \int \int_{-\infty}^{\eta(x)} \nabla \Phi^2 \, dy \, dx + \frac{g}{2} \int \eta^2 \, dx$$
$$\mathcal{H} = \frac{1}{2} \int \Phi \Phi_v |_{v=0} \, du + \frac{g}{2} \int y^2 x_u \, du$$

Introduce complex potential $\Pi(w) = \Phi(w) + i\Theta(w)$ analytic in \mathbb{C}^- . Define $\psi(u) = \Phi(u, v = 0)$ and we have:

$$\Theta(u) = \hat{H}\psi(u)$$

$$\Phi_{v}|_{v=0} = -\Theta_{u}|_{v=0} = -\hat{H}\psi_{u}$$

at v = 0, where $-\hat{H}\partial_u$ is Dirichlet-Neumann operator.

Formulation of Problem Hamiltonian Formalism Equations of Motion Finite Amplitude Travelling Waves

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Equations of motion

Equations of motion are found from extremizing action S:

$$\mathcal{L} = \int \psi \eta_t \, du - \mathcal{H}, \qquad \mathcal{S} = \int \mathcal{L} \, dt$$

And are:

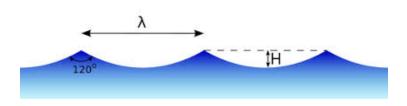
$$\psi_t + gy = -\frac{\psi_u^2 - \left(\hat{H}\psi_u\right)^2}{2|z_u|^2} + \psi_u \hat{H}\left(\frac{\hat{H}\psi_u}{|z_u|^2}\right)$$
$$z_t = z_u (\hat{H} - i) \frac{\hat{H}\psi_u}{|z_u|^2}$$

The results of simulation of a flavour of these equations is described in further sections.

Formulation of Problem Hamiltonian Formalism Equations of Motion Finite Amplitude Travelling Waves

- 4 同 🕨 - 4 目 🕨 - 4 目

What is a Stokes wave?



- A **Stokes wave** is a fully nonlinear wave propagating over one dimensional free surface of an ideal fluid.
- The defining parameters of a Stokes wave is steepness.
- The steepness is measured as a ratio of crest to trough height ${\cal H}$ over a wavelength λ

Formulation of Problem Hamiltonian Formalism Equations of Motion Finite Amplitude Travelling Waves

(日) (同) (三) (三)

Equation on the Stokes wave

A solution propagating with fixed velocity c:

$$z(u,t) = u + z(u - ct)$$

$$\psi(u,t) = \psi(u - ct)$$

satisfies:

$$\left(\frac{c^2}{c_0^2}\hat{k}-1\right)y-\left(\frac{1}{2}\hat{k}y^2+y\hat{k}y\right)=0$$

here $c_0=\sqrt{g/k_0}$ - phase velocity of linear gravity waves, and $\hat{k}=|k|=\sqrt{-\Delta}$

Travelling Wave solution a.k.a Stokes Wave Parameter Oscillation Evolution Problem

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Contents

- Formulation of Problem
- Hamiltonian Formalism
- Equations of Motion
- Finite Amplitude Travelling Waves

2 Numerical Simulations and More

- Travelling Wave solution a.k.a Stokes Wave
- Parameter Oscillation
- Evolution Problem

Numerical method

We solve equation:

$$\left(rac{c^2}{c_0^2}\hat{k}-1
ight)y-\left(rac{1}{2}\hat{k}y^2+y\hat{k}y
ight)=0$$

with Newton Conjugate-Gradient iterations in Fourier space:

• Write exact solution $y_k^* = y_k^{(n)} + \delta y_k^{(n)}$ and linearize at $y_k^{(n)}$:

$$\hat{L}_0\left(y_k^{(n)} + \delta y_k^{(n)}\right) = \hat{L}_0 y_k^{(n)} + \hat{L}_1 \delta y_k^{(n)} = 0$$

• Solve linearized system:

$$\hat{L}_{1}\delta y_{k}^{(n)} = -\hat{L}_{0}y_{k}^{(n)}$$
$$y_{k}^{(n+1)} = y_{k}^{(n)} + \delta y_{k}^{(n)}$$

These simulations were performed in quadruple precision.

Travelling Wave solution a.k.a Stokes Wave Parameter Oscillation Evolution Problem

(日) (同) (三) (三)

Stokes Waves

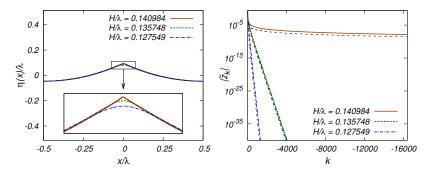
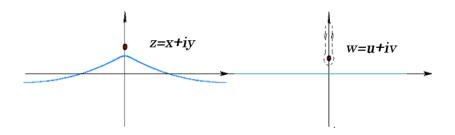


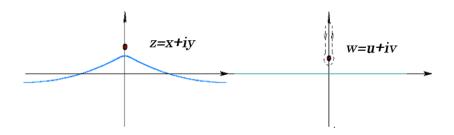
Figure : Stokes waves computed with Newton-CG method (left) and their spectra (right). Simulations with N = 2048 (blue), N = 4096 (green) and N = 4194304 (orange) Fourier modes. Black dashed lines are asymptotic decay predicted by theory.

Analytical Continuation



Recall that $\tilde{z}(u)$ is analytic in \mathbb{C}^- , but does it have an analytic continuation into the upper half plane?

Analytical Continuation



Recall that $\tilde{z}(u)$ is analytic in \mathbb{C}^- , but does it have an analytic continuation into the upper half plane?

Yes! Stokes wave can be written as a Cauchy integral over branch cut extending from iv_c to $+i\infty$

Travelling Wave solution a.k.a Stokes Wave Parameter Oscillation Evolution Problem

Asymptotics of Fourier Coefficients

$$z_k = \int_{-\pi}^{\pi} \tilde{z}(u) \exp(-iku) \, du$$

We deform the integration contour into \mathbb{C}^+ and assume the local behaviour about iv_c to be:

$$z(w) \sim (w - iv_c)^{\beta}$$

It is easy to show that asymptotically

$$egin{aligned} & z_k
ightarrow |k|^{-eta-1} \exp(-|k| v_c) \ & k
ightarrow -\infty \end{aligned}$$

Result from 1973 by M. Grant shows that $\beta = \frac{1}{2}$ and it is supported by analysis of the spectra we have found.

Travelling Wave solution a.k.a Stokes Wave Parameter Oscillation Evolution Problem

< 🗇 🕨 < 🖻 🕨

Simulations in high steepness regimes

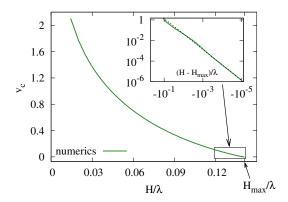


Figure : Position of the singularity v_c as a function of wave steepness. Our estimate for steepness of highest $\frac{H_{max}}{\lambda} = 0.1410633 \pm 4 \cdot 10^{-7}$

イロト イポト イラト イラト

Limiting Stokes Wave

The limiting Stokes wave a.k.a wave of greatest height has a jump in derivative η_x and forms a $\frac{2\pi}{3}$ angle on the surface.

The singularity of limiting Stokes appears as a result of coalescence of more than one singularity, e.g.:

$$z(w)\sim f(w)\left(w-iv_c
ight)^{1/2}+h.o.t.
ightarrow w^{2/3}$$
 as $v_c
ightarrow 0$

where f(w) is some regular function. Finding the limiting Stokes wave from presented equations faces several major difficulties.

同 ト イ ヨ ト イ ヨ ト

Everwidening Spectrum

The Asymptotics of Fourier coefficients as $k \to \infty$:

$$y_k \sim rac{1}{|k|^{3/2}} \exp\left(-|k|v_c
ight)$$

 $(\hat{k}y)_k \sim rac{1}{|k|^{1/2}} \exp\left(-|k|v_c
ight)$

Take a limit $v_c \rightarrow 0$ and:

$$(\hat{k}y)_k\sim rac{1}{|k|^{1/2}}$$

同 ト イ ヨ ト イ ヨ ト

Everwidening Spectrum

The Asymptotics of Fourier coefficients as $k \to \infty$:

$$y_k \sim rac{1}{|k|^{3/2}} \exp\left(-|k|v_c
ight)$$

 $(\hat{k}y)_k \sim rac{1}{|k|^{1/2}} \exp\left(-|k|v_c
ight)$

Take a limit $v_c \rightarrow 0$ and:

$$(\hat{k}y)_k\sim rac{1}{|k|^{1/2}}$$

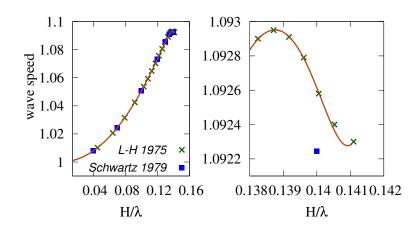
Divergent!

Travelling Wave solution a.k.a Stokes Wave Parameter Oscillation Evolution Problem

3

э

Velocity Oscillation



- 4 同 6 4 日 6 4 日 6

How can we study the analytic properties?

- Study of Fourier spectrum:
 - Accurate, but only allows to study the singularities closest to the real axis
- Onstruction of Padé interpolant and analysis of its poles:
 - Straight-forward construction of Padé interpolant suffers from catastrophic loss of precision in finite digit arithmetic.
- **Solution:** Alpert-Greengard-Hagström algorithm(AGH) can construct Padé approximation using many points on the grid.

Branch Cut

We expand periodic interval $u \in [-\pi, \pi]$ to infinite interval $\zeta \in (-\infty, \infty)$ with auxiliary transform:

$$\zeta = \tan\left(\frac{w}{2}\right)$$

Applying Padé approximation we observe that Stokes wave is a branch cut:

$$\tilde{z}(u) = z(u) - u \approx \sum_{k=1}^{d} \frac{\alpha_k}{\tan\left(\frac{u}{2}\right) - i\chi_k} \approx \int_{\chi_c}^{1} \frac{\rho(\chi)d\chi}{\tan\left(\frac{u}{2}\right) - i\chi}$$

The branch cut spans along the positive imaginary axis from point $i\chi_{\rm c}$ to $+i\infty$

Travelling Wave solution a.k.a Stokes Wave Parameter Oscillation Evolution Problem

Padé Approximation of Stokes Wave

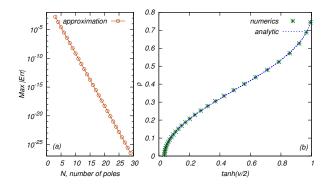
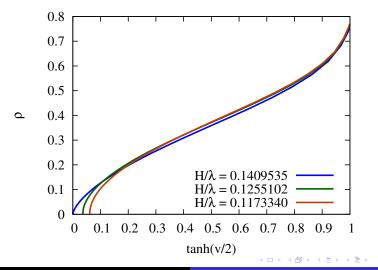


Figure : (a) Maximum of absolute error between the Stokes wave solution and its approximation by poles as a function of the number of poles; (b) Reconstructed jump on the branch cut using residues and position of poles from AGH algorithm

Travelling Wave solution a.k.a Stokes Wave Parameter Oscillation Evolution Problem

Jump on the Branch Cut



・ロト ・ 一 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

Numerical simulation of time-dependent problem

The equations on $\psi(u, t)$ and z(u, t) are not optimal for numerical simulations, instead equations are formulated in terms of $R(u, t) = \frac{1}{z_u}$ and $V(u, t) = \frac{i\psi_u}{z_u}$:

$$R_t = i (UR' - U'R)$$
$$V_t = i (UV' - B'R) + g (R - 1)$$

it is convenient to introduce projection operator $\hat{P} = \frac{1}{2}(1+i\hat{H})$, then $U = 2\hat{P}\left(\frac{-\hat{H}\psi_u}{|z_u|^2}\right)$ and $B = \hat{P}\left(\frac{|\Phi_u|^2}{|z_u|^2}\right)$

Travelling Wave solution a.k.a Stokes Wave Parameter Oscillation Evolution Problem

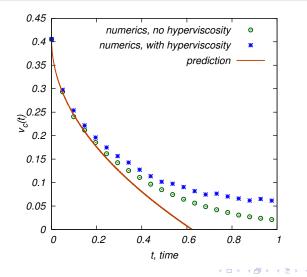
- 4 同 6 4 日 6 4 日 6

Simulation with Simple Pole in V as Initial Data

伺 と く ヨ と く ヨ と

Evolution of branch cut corresponding to velocity

Position of branch cut in the absence of gravity



Conclusions

- Analytical properties of Stokes wave are fully determined by a single branch cut.
- High steepness waves have been constructed numerically.
- The prediction of oscillatory approach to limiting wave was confirmed, with several of the oscillations being well-resolved.
- Closed integral equations on $\rho(\chi)$ were found.