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Figure : Nearly plane waves in the wake of a boat in Maas-Waal Canal.
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Equations of free surface hydrodynamics

Consider a potential flow of ideal fluid in a seminfinite strip
(x , y) ∈ [−π, π]x [−∞, η(x , t)] periodic in x-variable.

∇2Φ = 0

with BC and domain defined by:

∂η

∂t
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−∂η
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Conformal Map

We introduce the conformal map z(w , t) = w + z̃(w , t), so that in
new variable w = u + iv fluid occupies region [−π, π]x [−∞, 0].

Analyticity of a function z̃(w) in C− imposes a relation between
real and imaginary parts of z̃ on the free surface v = 0:

z̃(u) = x̃(u) + iy(u) = x̃(u) + i Ĥ x̃(u) = 2P̂ x̃

where Ĥ is Hilbert operator, and P̂ = 1
2

(
1 + i Ĥ

)
is projector.
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Hamiltonian

In the absence of viscosity, free surface hydrodynamics constitute a
Hamiltonian system with:

H =
1

2

∫ ∫ η(x)

−∞
∇Φ2 dy dx +

g

2

∫
η2 dx

H =
1

2

∫
ΦΦv |v=0 du +

g

2

∫
y2xu du

Introduce complex potential Π(w) = Φ(w) + iΘ(w) analytic in
C−. Define ψ(u) = Φ(u, v = 0) and we have:

Θ(u) = Ĥψ(u)

Φv |v=0 = − Θu|v=0 = −Ĥψu

at v = 0, where −Ĥ∂u is Dirichlet-Neumann operator.
Sergey Dyachenko*, Pavel Lushnikov and Alexander Korotkevich Finding the Stokes Wave: Low Steepness to Highest Wave



Free Surface Hydrodynamics
Numerical Simulations and More

Formulation of Problem
Hamiltonian Formalism
Equations of Motion
Finite Amplitude Travelling Waves

Equations of motion

Equations of motion are found from extremizing action S:

L =

∫
ψηt du −H, S =

∫
L dt

And are:

ψt + gy = −
ψ2
u −

(
Ĥψu

)2
2|zu|2

+ ψuĤ

(
Ĥψu

|zu|2

)

zt = zu(Ĥ − i)
Ĥψu

|zu|2

The results of simulation of a flavour of these equations is
described in further sections.
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What is a Stokes wave?

A Stokes wave is a fully nonlinear wave propagating over one
dimensional free surface of an ideal fluid.

The defining parameters of a Stokes wave is steepness.

The steepness is measured as a ratio of crest to trough height
H over a wavelength λ
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Equation on the Stokes wave

A solution propagating with fixed velocity c:

z(u, t) = u + z(u − ct)

ψ(u, t) = ψ(u − ct)

satisfies: (
c2

c20
k̂ − 1

)
y −

(
1

2
k̂y2 + y k̂y

)
= 0

here c0 =
√
g/k0 - phase velocity of linear gravity waves, and

k̂ = |k| =
√
−∆
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Numerical method

We solve equation:(
c2

c20
k̂ − 1

)
y −

(
1

2
k̂y2 + y k̂y

)
= 0

with Newton Conjugate-Gradient iterations in Fourier space:

Write exact solution y∗k = y
(n)
k + δy

(n)
k and linearize at y

(n)
k :

L̂0
(
y
(n)
k + δy

(n)
k

)
= L̂0y

(n)
k + L̂1δy

(n)
k = 0

Solve linearized system:

L̂1δy
(n)
k = −L̂0y (n)k

y
(n+1)
k = y

(n)
k + δy

(n)
k

These simulations were performed in quadruple precision.
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Stokes Waves
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Figure : Stokes waves computed with Newton-CG method (left) and
their spectra (right). Simulations with N = 2048 (blue), N = 4096
(green) and N = 4194304 (orange) Fourier modes. Black dashed lines
are asymptotic decay predicted by theory.
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Analytical Continuation

Recall that z̃(u) is analytic in C−, but does it have an analytic
continuation into the upper half plane?
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Analytical Continuation

Recall that z̃(u) is analytic in C−, but does it have an analytic
continuation into the upper half plane?

Yes! Stokes wave can be written as a Cauchy integral over
branch cut extending from ivc to +i∞
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Asymptotics of Fourier Coefficients

zk =

∫ π

−π
z̃(u) exp(−iku) du

We deform the integration contour into C+ and assume the local
behaviour about ivc to be:

z(w) ∼ (w − ivc)β

It is easy to show that asymptotically

zk → |k |−β−1 exp(−|k|vc)

k → −∞

Result from 1973 by M. Grant shows that β = 1
2 and it is

supported by analysis of the spectra we have found.
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Simulations in high steepness regimes
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Figure : Position of the singularity vc as a function of wave steepness.

Our estimate for steepness of highest
Hmax

λ
= 0.1410633± 4 · 10−7
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Limiting Stokes Wave

The limiting Stokes wave a.k.a wave of greatest height has a jump
in derivative ηx and forms a 2π

3 angle on the surface.

The singularity of limiting Stokes appears as a result of coalescence
of more than one singularity, e.g.:

z(w) ∼ f (w) (w − ivc)1/2 + h.o.t.→ w2/3

as vc → 0

where f (w) is some regular function. Finding the limiting Stokes
wave from presented equations faces several major difficulties.
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Everwidening Spectrum

The Asymptotics of Fourier coefficients as k →∞:

yk ∼
1

|k|3/2
exp (−|k |vc)

(k̂y)k ∼
1

|k|1/2
exp (−|k |vc)

Take a limit vc → 0 and:

(k̂y)k ∼
1

|k |1/2

Divergent!
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Everwidening Spectrum

The Asymptotics of Fourier coefficients as k →∞:
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Velocity Oscillation
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How can we study the analytic properties?

1 Study of Fourier spectrum:

Accurate, but only allows to study the singularities closest to
the real axis

2 Construction of Padé interpolant and analysis of its poles:

Straight-forward construction of Padé interpolant suffers from
catastrophic loss of precision in finite digit arithmetic.

Solution: Alpert-Greengard-Hagström algorithm(AGH) can
construct Padé approximation using many points on the grid.
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Branch Cut

We expand periodic interval u ∈ [−π, π] to infinite interval
ζ ∈ (−∞,∞) with auxiliary transform:

ζ = tan
(w

2

)
Applying Padé approximation we observe that Stokes wave is a
branch cut:

z̃(u) = z(u)− u ≈
d∑

k=1

αk

tan
(u

2

)
− iχk

≈
∫ 1

χc

ρ(χ)dχ

tan
(u

2

)
− iχ

The branch cut spans along the positive imaginary axis from point
iχc to +i∞
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Padé Approximation of Stokes Wave
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Figure : (a) Maximum of absolute error between the Stokes wave
solution and its approximation by poles as a function of the number of
poles; (b) Reconstructed jump on the branch cut using residues and
position of poles from AGH algorithm
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Jump on the Branch Cut
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Numerical simulation of time-dependent problem

The equations on ψ(u, t) and z(u, t) are not optimal for numerical
simulations, instead equations are formulated in terms of
R(u, t) = 1

zu
and V (u, t) = iψu

zu
:

Rt = i
(
UR ′ − U ′R

)
Vt = i

(
UV ′ − B ′R

)
+ g (R − 1)

it is convenient to introduce projection operator P̂ = 1
2(1 + i Ĥ),

then U = 2P̂

(
−Ĥψu

|zu|2

)
and B = P̂

(
|Φu|2

|zu|2

)
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Simulation with Simple Pole in V as Initial Data
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Evolution of branch cut corresponding to velocity
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Position of branch cut in the absence of gravity

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0  0.2  0.4  0.6  0.8  1

v
c
(t

)

t, time

numerics, no hyperviscosity

numerics, with hyperviscosity

prediction

Sergey Dyachenko*, Pavel Lushnikov and Alexander Korotkevich Finding the Stokes Wave: Low Steepness to Highest Wave



Free Surface Hydrodynamics
Numerical Simulations and More

Travelling Wave solution a.k.a Stokes Wave
Parameter Oscillation
Evolution Problem

Conclusions

Analytical properties of Stokes wave are fully determined by a
single branch cut.

High steepness waves have been constructed numerically.

The prediction of oscillatory approach to limiting wave was
confirmed, with several of the oscillations being well-resolved.

Closed integral equations on ρ(χ) were found.
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