n-particle quantum statistics on graphs

Jon Harrison¹, J.P. Keating², J.M. Robbins² and A. Sawicki³

¹Baylor University, ²University of Bristol, ³M.I.T.

TexAMP - 11/14

Jon Harrison quantum statistics on graphs

Quantum statistics

Single particle space configuration space X.

Two particle statistics - alternative approaches:

• Quantize $X^{\times 2}$ and restrict Hilbert space to the symmetric or anti-symmetric subspace.

$$\psi(x_1, x_2) = \pm \psi(x_2, x_1)$$
 (1)

イロト イポト イラト イラト

Bose-Einstein/Fermi-Dirac statistics.

Quantum statistics

Single particle space configuration space X.

Two particle statistics - alternative approaches:

• Quantize $X^{\times 2}$ and restrict Hilbert space to the symmetric or anti-symmetric subspace.

$$\psi(x_1, x_2) = \pm \psi(x_2, x_1)$$
 (1)

イロト イポト イヨト イヨ

Bose-Einstein/Fermi-Dirac statistics.

• (Leinaas and Myrheim '77) Treat particles as indistinguishable, $\psi(x_1, x_2) \equiv \psi(x_2, x_1)$. Quantize two particle configuration space.

Definition

Configuration space of n indistinguishable particles in X,

$$C_n(X) = (X^{\times n} - \Delta_n)/S_n$$

where $\Delta_n = \{x_1, \ldots, x_n | x_i = x_j \text{ for some } i \neq j\}.$

BAYLO

イロン イヨン イヨン イヨン

Definition

Configuration space of n indistinguishable particles in X,

$$C_n(X) = (X^{\times n} - \Delta_n)/S_n$$

where $\Delta_n = \{x_1, \ldots, x_n | x_i = x_j \text{ for some } i \neq j\}.$

1st homology groups of $C_n(\mathbb{R}^d)$:

H₁(C_n(ℝ^d)) = ℤ₂ for d ≥ 3.
 2 abelian irreps. corresponding to Bose-Einstein & Fermi-Dirac statistics.

Jon Harrison

quantum statistics on graphs

<ロ> (四) (四) (三) (三)

Definition

Configuration space of n indistinguishable particles in X,

$$C_n(X) = (X^{\times n} - \Delta_n)/S_n$$

where $\Delta_n = \{x_1, \ldots, x_n | x_i = x_j \text{ for some } i \neq j\}.$

1st homology groups of $C_n(\mathbb{R}^d)$:

- H₁(C_n(ℝ^d)) = ℤ₂ for d ≥ 3.
 2 abelian irreps. corresponding to Bose-Einstein & Fermi-Dirac statistics.
- $H_1(C_n(\mathbb{R}^2)) = \mathbb{Z}$

Any single phase $e^{i\theta}$ can be associated to every primitive exchange path – anyon statistics.

イロト イヨト イヨト イヨト

Definition

Configuration space of n indistinguishable particles in X,

$$C_n(X) = (X^{\times n} - \Delta_n)/S_n$$

where $\Delta_n = \{x_1, \ldots, x_n | x_i = x_j \text{ for some } i \neq j\}.$

1st homology groups of $C_n(\mathbb{R}^d)$:

- H₁(C_n(ℝ^d)) = ℤ₂ for d ≥ 3.
 2 abelian irreps. corresponding to Bose-Einstein & Fermi-Dirac statistics.
- $H_1(C_n(\mathbb{R}^2)) = \mathbb{Z}$

Any single phase $e^{i\theta}$ can be associated to every primitive exchange path – anyon statistics.

*H*₁(*C_n*(ℝ)) = 1 particles cannot be exchanged.

・ロト ・日本 ・モート ・モート

What happens on a graph where the underlying space has arbitrarily complex topology?

BAYLOR

イロト イヨト イヨト イヨト

Jon Harrison quantum statistics on graphs

Graph connectivity

- Given a connected graph Γ a k-cut is a set of k vertices whose removal makes Γ disconnected.
- Γ is *k*-connected if the minimal cut is size *k*.
- **Theorem** (Menger) For a *k*-connected graph there exist at least *k* independent paths between every pair of vertices.

Example:

Graph connectivity

- Given a connected graph Γ a k-cut is a set of k vertices whose removal makes Γ disconnected.
- Γ is *k*-connected if the minimal cut is size *k*.
- **Theorem** (Menger) For a *k*-connected graph there exist at least *k* independent paths between every pair of vertices.

Example:

(3)

Graph connectivity

- Given a connected graph Γ a k-cut is a set of k vertices whose removal makes Γ disconnected.
- Γ is *k*-connected if the minimal cut is size *k*.
- **Theorem** (Menger) For a *k*-connected graph there exist at least *k* independent paths between every pair of vertices.

Example:

Two independent paths joining u and v.

Features of graph statistics

On 3-connected graphs statistics only depend on whether the graph is planar (Anyons) or non-planar (Bosons/Fermions).

イロト イヨト イヨト イヨト

Features of graph statistics

On 3-connected graphs statistics only depend on whether the graph is planar (Anyons) or non-planar (Bosons/Fermions).

A two dimensional lattice with a small section that is non-planar is locally planar but has Bose/Fermi statistics.

Jon Harrison quantum statistics on graphs

イロト イヨト イヨト イヨト

On 2-connected graphs statistics are independent of the number of particles.

э

イロン イヨン イヨン イヨン

On 2-connected graphs statistics are independent of the number of particles.

For example, one could construct a chain of 3-connected non-planar components where particles behave with alternating Bose/Fermi statistics.

BAYLOR

* ヨト * ヨ

< 🗇 🕨

On 1-connected graphs the statistics *depends* on the no. of particles n.

æ

イロン イヨン イヨン イヨン

On 1-connected graphs the statistics *depends* on the no. of particles n. Example, star with E edges.

no. of anyon phases

$$\binom{\mathsf{n}+\mathsf{E}-2}{\mathsf{E}-1}(\mathsf{E}-2)-\binom{\mathsf{n}+\mathsf{E}-2}{\mathsf{E}-2}+1$$
.

BAYLOR

<ロ> (四) (四) (三) (三)

1st homology group of graph

By the structure theorem for finitely generated modules (for a suitably subdivided graph Γ)

$$H_1(C_n(\Gamma)) = \mathbb{Z}^k \oplus \mathbb{Z}_{n_1} \oplus \ldots \oplus \mathbb{Z}_{n_l}, \qquad (2)$$

where $n_i | n_{i+1}$.

So $H_1(C_n(\Gamma))$ is determined by k free (anyon) phases $\{\phi_1, \ldots, \phi_k\}$ and l discrete phases $\{\psi_1, \ldots, \psi_l\}$ such that for each $i \in \{1, \ldots, l\}$

$$n_i\psi_i=0 \mod 2\pi, \ n_i\in\mathbb{N} \ \text{ and } n_i|n_{i+1}.$$
 (3)

BAYLOR

・ロト ・ 同ト ・ ヨト ・ ヨト

Basic cases

For 2 particles.

Exchange of 2 particles around loop c; one free phase ϕ_{c2} .

Exchange of 2 particles at Y-junction; one free phase ϕ_Y .

< 1[™] >

★ E ► < E ►</p>

Jon Harrison quantum statistics on graphs

Basic cases

For 2 particles.

Exchange of 2 particles around loop c; one free phase ϕ_{c2} .

Exchange of 2 particles at Y-junction; one free phase ϕ_Y .

< 1[™] >

Basic cases

For 2 particles.

Exchange of 2 particles around loop c; one free phase ϕ_{c2} .

Exchange of 2 particles at Y-junction; one free phase ϕ_Y .

< 1[™] >

< 注 → < 注

Basic cases

For 2 particles.

Exchange of 2 particles around loop c; one free phase ϕ_{c2} .

Exchange of 2 particles at Y-junction; one free phase ϕ_Y .

< 1[™] >

Basic cases

For 2 particles.

Exchange of 2 particles around loop c; one free phase ϕ_{c2} .

Exchange of 2 particles at Y-junction; one free phase ϕ_Y .

< 1[™] >

Basic cases

For 2 particles.

Exchange of 2 particles around loop c; one free phase ϕ_{c2} .

Exchange of 2 particles at Y-junction; one free phase ϕ_Y .

< 17 >

Basic cases

For 2 particles.

Exchange of 2 particles around loop c; one free phase ϕ_{c2} .

Exchange of 2 particles at Y-junction; one free phase ϕ_Y .

< 17 >

Basic cases

For 2 particles.

Exchange of 2 particles around loop c; one free phase ϕ_{c2} .

Exchange of 2 particles at Y-junction; one free phase ϕ_Y .

< 1[™] >

Basic cases

For 2 particles.

Exchange of 2 particles around loop c; one free phase ϕ_{c2} .

Exchange of 2 particles at Y-junction; one free phase ϕ_Y .

< 1[™] >

Basic cases

For 2 particles.

Exchange of 2 particles around loop c; one free phase ϕ_{c2} .

Exchange of 2 particles at Y-junction; one free phase ϕ_Y .

< 🗇 🕨

Basic cases

For 2 particles.

Exchange of 2 particles around loop c; one free phase ϕ_{c2} .

Exchange of 2 particles at Y-junction; one free phase ϕ_Y .

< 17 >

Basic cases

For 2 particles.

Exchange of 2 particles around loop c; one free phase ϕ_{c2} .

Exchange of 2 particles at Y-junction; one free phase ϕ_Y .

< 17 >

Lasso graph

Identify three 2-particle cycles:

- (i) Rotate both particles around loop c; phase $\phi_{c,2}$.
- (ii) Exchange particles on Y-subgraph; phase ϕ_Y .
- (iii) Rotate one particle around loop c other particle at vertex 1; $(1,2) \rightarrow (1,3) \rightarrow (1,4) \rightarrow (1,2)$, phase $\phi_{c,1}^1$.

Relation from contactable 2-cell $\phi_{c,2} = \phi_{c,1}^1 + \phi_Y$.

Lasso graph

Identify three 2-particle cycles:

- (i) Rotate both particles around loop c; phase $\phi_{c,2}$.
- (ii) Exchange particles on Y-subgraph; phase ϕ_Y .
- (iii) Rotate one particle around loop c other particle at vertex 1; $(1,2) \rightarrow (1,3) \rightarrow (1,4) \rightarrow (1,2)$, phase $\phi_{c,1}^1$.

Relation from contactable 2-cell $\phi_{c,2} = \phi_{c,1}^1 + \phi_Y$.

Let c be a loop. What is the relation between $\phi_{c,1}^{u}$ and $\phi_{c,1}^{v}$?

(a) u and v joined by path disjoint with c.

 $\phi^{u}_{c,1} = \phi^{v}_{c,1}$ as exchange cycles homotopy equivalent.

(b) u and v only joined by paths through c.

Two lasso graphs so $\phi_{c,2} = \phi_{c,1}^{u} + \phi_{Y_1} \& \phi_{c,2} = \phi_{c,1}^{v} + \phi_{Y_2}$. Hence $\phi_{c,1}^{u} - \phi_{c,1}^{v} = \phi_{Y_2} - \phi_{Y_1}$.

BAYLOR

<ロ> (四) (四) (三) (三)

Let c be a loop. What is the relation between $\phi_{c,1}^{u}$ and $\phi_{c,1}^{v}$?

(a) u and v joined by path disjoint with c.

 $\phi^{u}_{c,1} = \phi^{v}_{c,1}$ as exchange cycles homotopy equivalent.

(b) u and v only joined by paths through c.

Two lasso graphs so $\phi_{c,2} = \phi_{c,1}^{u} + \phi_{Y_1} \& \phi_{c,2} = \phi_{c,1}^{v} + \phi_{Y_2}$. Hence $\phi_{c,1}^{u} - \phi_{c,1}^{v} = \phi_{Y_2} - \phi_{Y_1}$.

• Relations between phases involving *c* encoded in phases ϕ_Y . $H_1(C_2(\Gamma)) = \mathbb{Z}^{\beta_1(\Gamma)} \oplus A$, where *A* determined by Y-cycles.

• In (a) we have a \mathcal{B} subgraph & using (b) also $\phi_{Y_1} = \phi_{Y_2}$. BAYLOR

3-connected graphs

The prototypical 3-connected graph is a *wheel* W^k .

Theorem (Wheel theorem)

Let Γ be a simple 3-connected graph different from a wheel. Then for some edge $e \in \Gamma$ either $\Gamma \setminus e$ or Γ/e is simple and 3-connected.

- $\Gamma \setminus e$ is Γ with the edge *e* removed.
- Γ/e is Γ with *e* contracted to identify its vertices.

_emma

For 3-connected simple graphs all phases $\phi_{\mathbf{Y}}$ are equal up to a sign.

Sketch proof. The lemma holds on K_4 (minimal wheel). By wheel thm we only need to show that adding an edge or expanding a vertex any new phases ϕ_Y are the same as the original phase. Adding an edge: $\Gamma \cup e$

・ロト ・ 同ト ・ ヨト ・ ヨト

_emma

For 3-connected simple graphs all phases ϕ_Y are equal up to a sign.

Sketch proof. The lemma holds on K_4 (minimal wheel). By wheel thm we only need to show that adding an edge or expanding a vertex any new phases ϕ_Y are the same as the original phase. *Adding an edge:* $\Gamma \cup e$

Using 3-connectedness identify independent paths in Γ to make $\mathcal{B}.$ Then $\phi_{\mathbf{Y}}=\phi_{\mathbf{Y}}.$

Lemma

For 3-connected simple graphs all phases ϕ_Y are equal up to a sign.

Sketch proof. The lemma holds on K_4 (minimal wheel). By wheel thm we only need to show that adding an edge or expanding a vertex any new phases ϕ_Y are the same as the original phase. *Vertex expansion:* Split vertex of degree > 3 into two vertices u and v joined by a new edge e.

イロト イヨト イヨト イヨト

Lemma

For 3-connected simple graphs all phases ϕ_Y are equal up to a sign.

Sketch proof. The lemma holds on K_4 (minimal wheel). By wheel thm we only need to show that adding an edge or expanding a vertex any new phases ϕ_Y are the same as the original phase. *Vertex expansion:* Split vertex of degree > 3 into two vertices u and v joined by a new edge e.

Using 3-connectedness identify independent paths in Γ to make $\mathcal{B}_{\text{BAYLOR}}$. Then $\phi_{\mathbf{Y}} = \phi_{\mathbf{Y}}$.

Theorem

For a 3-connected simple graph, $H_1(C_2(\Gamma)) = \mathbb{Z}^{\beta_1(\Gamma)} \oplus A$, where $A = \mathbb{Z}_2$ for non-planar graphs and $A = \mathbb{Z}$ for planar graphs.

Theorem

For a 3-connected simple graph, $H_1(C_2(\Gamma)) = \mathbb{Z}^{\beta_1(\Gamma)} \oplus A$, where $A = \mathbb{Z}_2$ for non-planar graphs and $A = \mathbb{Z}$ for planar graphs.

Proof.

• For K_5 and $K_{3,3}$ every phase $\phi_Y = 0$ or π . By Kuratowski's theorem a non-planar graph contains a subgraph which is isomorphic to K_5 or $K_{3,3}$.

<ロ> (四) (四) (三) (三)

Theorem

For a 3-connected simple graph, $H_1(C_2(\Gamma)) = \mathbb{Z}^{\beta_1(\Gamma)} \oplus A$, where $A = \mathbb{Z}_2$ for non-planar graphs and $A = \mathbb{Z}$ for planar graphs.

Proof.

- For K_5 and $K_{3,3}$ every phase $\phi_Y = 0$ or π . By Kuratowski's theorem a non-planar graph contains a subgraph which is isomorphic to K_5 or $K_{3,3}$.
- For planar graphs the anyon phase can be introduced by drawing the graph in the plane and integrating the anyon vector potential $\frac{\alpha}{2\pi}\hat{z} \times \frac{r_1 r_2}{|r_1 r_2|^2}$ along the edges of the two-particle graph, where r_1 and r_2 are the positions of the particles.

<ロ> (四) (四) (三) (三)

Summary

- Full classification of abelian quantum statistics on graphs by decomposing graph in 1-, 2- and 3-connected components.
- Physical insight into dependance of statistics on graph connectivity.
- Interesting new features of graph statistics.
- Statistics incorporated in gauge potential.
- JH, JP Keating, JM Robbins and A Sawicki, "n-particle quantum statistics on graphs," Commun. Math. Phys. (2014)
 330 1293–1326 arXiv:1304.5781
- JH, JP Keating and JM Robbins, "Quantum statistics on graphs," Proc. R. Soc. A (2010) doi:10.1098/rspa.2010.0254 arXiv:1101.1535

イロト イポト イラト イラト