n-particle quantum statistics on graphs

Jon Harrison¹, J.P. Keating², J.M. Robbins² and A. Sawicki³

¹Baylor University, ²University of Bristol, ³M.I.T.

 $TextAMP - 11/14$

へのへ

イロト イ母ト イヨト イヨ

Quantum statistics

Single particle space configuration space X .

Two particle statistics - alternative approaches:

Quantize $X^{\times 2}$ and restrict Hilbert space to the symmetric or anti-symmetric subspace.

$$
\psi(x_1, x_2) = \pm \psi(x_2, x_1) \tag{1}
$$

メロメ メタメ メミメ メミ

へのへ

Bose-Einstein/Fermi-Dirac statistics.

Quantum statistics

Single particle space configuration space X .

Two particle statistics - alternative approaches:

Quantize $X^{\times 2}$ and restrict Hilbert space to the symmetric or anti-symmetric subspace.

$$
\psi(x_1, x_2) = \pm \psi(x_2, x_1) \tag{1}
$$

イロメ イ母メ イヨメ イヨ

∽≏ດ

Bose-Einstein/Fermi-Dirac statistics.

(Leinaas and Myrheim '77) Treat particles as indistinguishable, $\psi(x_1, x_2) \equiv \psi(x_2, x_1)$. Quantize two particle configuration space.

Configuration space of n indistinguishable particles in X ,

$$
C_n(X)=(X^{\times n}-\Delta_n)/S_n
$$

where $\Delta_n = \{x_1, \ldots, x_n | x_i = x_j \text{ for some } i \neq j\}.$

 $2Q$

イロト イ押 トイモト イモト

Configuration space of *n* indistinguishable particles in X ,

$$
C_n(X)=(X^{\times n}-\Delta_n)/S_n
$$

where $\Delta_n = \{x_1, \ldots, x_n | x_i = x_j \text{ for some } i \neq j\}.$

1st homology groups of $C_n(\mathbb{R}^d)$:

 $H_1(C_n(\mathbb{R}^d)) = \mathbb{Z}_2$ for $d \geq 3$. 2 abelian irreps. corresponding to Bose-Einstein & Fermi-Dirac statistics.

Jon Harrison [quantum statistics on graphs](#page-0-0)

メロメ メ御 メメ ヨメ メヨメ

Configuration space of *n* indistinguishable particles in X ,

$$
C_n(X)=(X^{\times n}-\Delta_n)/S_n
$$

where $\Delta_n = \{x_1, \ldots, x_n | x_i = x_j \text{ for some } i \neq j\}.$

1st homology groups of $C_n(\mathbb{R}^d)$:

- $H_1(C_n(\mathbb{R}^d)) = \mathbb{Z}_2$ for $d \geq 3$. 2 abelian irreps. corresponding to Bose-Einstein & Fermi-Dirac statistics.
- $H_1(C_n(\mathbb{R}^2)) = \mathbb{Z}$

Any single phase $\mathrm{e}^{\mathrm{i}\theta}$ can be associated to every primitive exchange path – anyon statistics.

イロメ イ御メ イヨメ イヨメ

∽≏ດ

Configuration space of *n* indistinguishable particles in X ,

$$
C_n(X)=(X^{\times n}-\Delta_n)/S_n
$$

where $\Delta_n = \{x_1, \ldots, x_n | x_i = x_j \text{ for some } i \neq j\}.$

1st homology groups of $C_n(\mathbb{R}^d)$:

 $H_1(C_n(\mathbb{R}^d)) = \mathbb{Z}_2$ for $d \geq 3$. 2 abelian irreps. corresponding to Bose-Einstein & Fermi-Dirac statistics.

$$
\bullet\ \ H_1(C_n(\mathbb{R}^2))=\mathbb{Z}
$$

Any single phase $\mathrm{e}^{\mathrm{i}\theta}$ can be associated to every primitive exchange path – anyon statistics.

 \bullet H₁(C_n(R)) = 1 particles cannot be exchanged.

イロメ イ御メ イヨメ イヨメ

∽≏ດ

What happens on a graph where the underlying space has arbitrarily complex topology?

BAYLO

 Ω

イロメ イ御メ イヨメ イヨメ

Jon Harrison [quantum statistics on graphs](#page-0-0)

Graph connectivity

- **Given a connected graph Γ a k-cut is a set of k vertices whose** removal makes Γ disconnected.
- \bullet Γ is *k-connected* if the minimal cut is size *k*.
- **Theorem** (Menger) For a k -connected graph there exist at least k independent paths between every pair of vertices.

Example:

イロト イ母ト イヨト イヨ

∽≏ດ

Graph connectivity

- Given a connected graph Γ a k-cut is a set of k vertices whose removal makes Γ disconnected.
- \bullet Γ is *k-connected* if the minimal cut is size *k*.
- **Theorem** (Menger) For a k-connected graph there exist at least k independent paths between every pair of vertices.

Example:

Two cut

∽≏ດ

K ロ ▶ K 倒 ▶

a Basa B

Graph connectivity

- **Given a connected graph Γ a k-cut is a set of k vertices whose** removal makes Γ disconnected.
- \bullet Γ is *k-connected* if the minimal cut is size *k*.
- **Theorem** (Menger) For a k -connected graph there exist at least k independent paths between every pair of vertices.

Example:

Two independent paths joining u and v .

- 4 FB +

∽≏ດ

Features of graph statistics

On 3-connected graphs statistics only depend on whether the graph is planar (Anyons) or non-planar (Bosons/Fermions).

 Ω

メロメ メ御 メメ ヨメ メヨメ

Features of graph statistics

On 3-connected graphs statistics only depend on whether the graph is planar (Anyons) or non-planar (Bosons/Fermions).

A two dimensional lattice with a small section that is non-planar is locally planar but has Bose/Fermi statistics.

Jon Harrison [quantum statistics on graphs](#page-0-0)

メロメ メ御 メメ ヨメ メヨメ

On 2-connected graphs statistics are independent of the number of particles.

 $2Q$

イロメ イ御メ イヨメ イヨメ

On 2-connected graphs statistics are independent of the number of particles.

For example, one could construct a chain of 3-connected non-planar components where particles behave with alternating Bose/Fermi statistics.

へのへ

 \leftarrow \Box

 \rightarrow \overline{m} \rightarrow

化重氮 化重

On 1-connected graphs the statistics depends on the no. of particles n.

Ξ

 $2Q$

イロメ イ御メ イヨメ イヨメ

On 1-connected graphs the statistics depends on the no. of particles n. Example, star with E edges.

no. of anyon phases

$$
\binom{n+E-2}{E-1}\left(E-2\right)-\binom{n+E-2}{E-2}+1.
$$

BAYL

 $2Q$

メロメ メタメ メミメ メミ

1st homology group of graph

By the structure theorem for finitely generated modules (for a suitably subdivided graph Γ)

$$
H_1(C_n(\Gamma))=\mathbb{Z}^k\oplus \mathbb{Z}_{n_1}\oplus \ldots \oplus \mathbb{Z}_{n_l}, \qquad (2)
$$

where $n_i | n_{i+1}$.

So $H_1(C_n(\Gamma))$ is determined by k free (anyon) phases $\{\phi_1,\ldots,\phi_k\}$ and *l* discrete phases $\{\psi_1, \ldots, \psi_l\}$ such that for each $i \in \{1, \ldots l\}$

$$
n_i\psi_i = 0 \text{ mod } 2\pi, \ \ n_i \in \mathbb{N} \ \text{ and } n_i|n_{i+1}. \tag{3}
$$

イロト イ団ト イヨト イヨ

Basic cases

For 2 particles.

Exchange of 2 particles around loop c; one free phase ϕ_{c2} .

Exchange of 2 particles at Y-junction; one free phase ϕ_Y .

化重新润滑

K ロ ▶ K 伊 ▶

BAYL

Basic cases

For 2 particles.

Exchange of 2 particles around loop c; one free phase ϕ_{c2} .

Exchange of 2 particles at Y-junction; one free phase ϕ_Y .

化重的 化重

K ロ ▶ K 伊 ▶

BAYL

Basic cases

For 2 particles.

Exchange of 2 particles around loop c; one free phase ϕ_{c2} .

Exchange of 2 particles at Y-junction; one free phase ϕ_Y .

化重的 化重

K ロ ▶ K 伊 ▶

BAYL

Basic cases

For 2 particles.

Exchange of 2 particles around loop c; one free phase ϕ_{c2} .

Exchange of 2 particles at Y-junction; one free phase ϕ_Y .

化重新润滑

K ロ ▶ K 伊 ▶

BAYL

つへへ

Jon Harrison [quantum statistics on graphs](#page-0-0)

Basic cases

For 2 particles.

Exchange of 2 particles around loop c; one free phase ϕ_{c2} .

Exchange of 2 particles at Y-junction; one free phase ϕ_Y .

化重的 化重

K ロ ▶ K 伊 ▶

BAYL

Basic cases

For 2 particles.

Exchange of 2 particles around loop c; one free phase ϕ_{c2} .

Exchange of 2 particles at Y-junction; one free phase ϕ_Y .

医电影 医医的

つへへ

K ロ ▶ K 伊 ▶

Basic cases

For 2 particles.

Exchange of 2 particles around loop c; one free phase ϕ_{c2} .

Exchange of 2 particles at Y-junction; one free phase ϕ_Y .

化重新润滑

つへへ

K ロ ▶ K 倒 ▶

Basic cases

For 2 particles.

Exchange of 2 particles around loop c; one free phase ϕ_{c2} .

Exchange of 2 particles at Y-junction; one free phase ϕ_Y .

化重新润滑

K ロ ▶ K 伊 ▶

BAYL

つへへ

Jon Harrison [quantum statistics on graphs](#page-0-0)

Basic cases

For 2 particles.

Exchange of 2 particles around loop c; one free phase ϕ_{c2} .

Exchange of 2 particles at Y-junction; one free phase ϕ_Y .

化重新润滑

K ロ ▶ K 倒 ▶

BAYL

Basic cases

For 2 particles.

Exchange of 2 particles around loop c; one free phase ϕ_{c2} .

Exchange of 2 particles at Y-junction; one free phase ϕ_Y .

化重新润滑

 \leftarrow \Box → 伊 ▶ BAYL

Basic cases

For 2 particles.

Exchange of 2 particles around loop c; one free phase ϕ_{c2} .

Exchange of 2 particles at Y-junction; one free phase ϕ_Y .

化重新润滑

つへへ

K ロ ▶ K 伊 ▶

Jon Harrison [quantum statistics on graphs](#page-0-0)

Basic cases

For 2 particles.

Exchange of 2 particles around loop c; one free phase ϕ_{c2} .

Exchange of 2 particles at Y-junction; one free phase ϕ_Y .

K ロ ▶ K 伊 ▶

BAYL

つへへ

医电影 医医的

Lasso graph

Identify three 2-particle cycles:

- (i) Rotate both particles around loop c; phase $\phi_{c,2}$.
- (ii) Exchange particles on Y-subgraph; phase ϕ_Y .
- (iii) Rotate one particle around loop c other particle at vertex 1; $(1,2)\rightarrow (1,3)\rightarrow (1,4) \rightarrow (1,2)$, phase $\phi^1_{c,1}.$

Relation from contactable 2-cell $\phi_{c,2} = \phi_{c,1}^1 + \phi_{Y}$ $\phi_{c,2} = \phi_{c,1}^1 + \phi_{Y}$ [.](#page-30-0)

ה מר

Lasso graph

Identify three 2-particle cycles:

- (i) Rotate both particles around loop c; phase $\phi_{c,2}$.
- (ii) Exchange particles on Y-subgraph; phase ϕ_Y .
- (iii) Rotate one particle around loop c other particle at vertex 1; $(1,2)\rightarrow (1,3)\rightarrow (1,4) \rightarrow (1,2)$, phase $\phi^1_{c,1}.$

Relation from contactable 2-cell $\phi_{c,2} = \phi_{c,1}^1 + \phi_{Y}$ $\phi_{c,2} = \phi_{c,1}^1 + \phi_{Y}$ [.](#page-30-0)

ה מר

Let c be a loop. What is the relation between $\phi_{c,1}^u$ and $\phi_{c,1}^v$?

- (a) u and v joined by path disjoint with c . $\phi^\mu_{c,1} = \phi^\nu_{c,1}$ as exchange cycles homotopy equivalent.
- (b) u and v only joined by paths through c . Two lasso graphs so $\phi_{c,2} = \phi_{c,1}^u + \phi_{Y_1}$ & $\phi_{c,2} = \phi_{c,1}^v + \phi_{Y_2}$. Hence $\phi_{c,1}^{\mu} - \phi_{c,1}^{\nu} = \phi_{Y_2} - \phi_{Y_1}$.

メロメ メタメ メミメ メミ

Let c be a loop. What is the relation between $\phi_{c,1}^u$ and $\phi_{c,1}^v$?

- (a) u and v joined by path disjoint with c . $\phi^\mu_{c,1} = \phi^\nu_{c,1}$ as exchange cycles homotopy equivalent.
- (b) u and v only joined by paths through c . Two lasso graphs so $\phi_{c,2} = \phi_{c,1}^u + \phi_{Y_1}$ & $\phi_{c,2} = \phi_{c,1}^v + \phi_{Y_2}$. Hence $\phi_{c,1}^{\mu} - \phi_{c,1}^{\nu} = \phi_{Y_2} - \phi_{Y_1}$.

- Relations between phases involving c encoded in phases ϕ_Y . $H_1(C_2(\Gamma))=\mathbb{Z}^{\beta_1(\Gamma)}\oplus A$, where A determined by Y-cycles.
- In (a) we have a $\mathcal B$ subgraph & using ([b\)](#page-32-0) [als](#page-34-0)[o](#page-31-0) $\phi_{{\sf Y}_1} = \phi_{{\sf Y}_2}$ $\phi_{{\sf Y}_1} = \phi_{{\sf Y}_2}$ [.](#page-34-0) Ω

3-connected graphs

The prototypical 3-connected graph is a wheel W^k .

Theorem (Wheel theorem)

Let Γ be a simple 3-connected graph different from a wheel. Then for some edge $e \in \Gamma$ either $\Gamma \setminus e$ or Γ / e is simple and 3-connected.

- \bullet $\lceil \cdot \rceil$ is $\lceil \cdot \rceil$ with the edge e removed.
- \bullet \bullet Γ/e i[s](#page-35-0) Γ with e contracted to identify i[ts](#page-33-0) v[er](#page-35-0)t[ice](#page-34-0)s[.](#page-33-0)

 $\Box \rightarrow \neg \leftarrow \neg \Box \rightarrow \neg \leftarrow \Box \rightarrow$

For 3-connected simple graphs all phases ϕ_Y are equal up to a sign.

Sketch proof. The lemma holds on K_4 (minimal wheel). By wheel thm we only need to show that adding an edge or expanding a vertex any new phases ϕ_Y are the same as the original phase. Adding an edge: $\Gamma \cup e$

K ロ ▶ K 御 ▶ K 듣 ▶ K 듣

For 3-connected simple graphs all phases ϕ_Y are equal up to a sign.

Sketch proof. The lemma holds on K_4 (minimal wheel). By wheel thm we only need to show that adding an edge or expanding a vertex any new phases ϕ_Y are the same as the original phase. Adding an edge: $Γ ∪ e$

Using 3-connectedness identify independent paths in Γ to make β . Then $\phi_Y = \phi_Y$.

メロメ メタメ メミメ メミ

For 3-connected simple graphs all phases ϕ_Y are equal up to a sign.

Sketch proof. The lemma holds on K_4 (minimal wheel). By wheel thm we only need to show that adding an edge or expanding a vertex any new phases ϕ_Y are the same as the original phase. Vertex expansion: Split vertex of degree > 3 into two vertices u and v joined by a new edge e .

 $\overline{D} A$

メロメ メ御 メメ ヨメ メヨメ

For 3-connected simple graphs all phases ϕ_Y are equal up to a sign.

Sketch proof. The lemma holds on K_4 (minimal wheel). By wheel thm we only need to show that adding an edge or expanding a vertex any new phases ϕ_Y are the same as the original phase. Vertex expansion: Split vertex of degree > 3 into two vertices u and v joined by a new edge e .

Using 3-connectedness identify independent paths in Γ to make β Then $\phi_Y = \phi_Y$. メロメ メ御 メメ ヨメ メヨメ へのへ

Theorem

For a 3-connected simple graph, $H_1(C_2(\Gamma))=\mathbb{Z}^{\beta_1(\Gamma)}\oplus A$, where $A = \mathbb{Z}_2$ for non-planar graphs and $A = \mathbb{Z}$ for planar graphs.

 $2Q$

Theorem

For a 3-connected simple graph, $H_1(C_2(\Gamma))=\mathbb{Z}^{\beta_1(\Gamma)}\oplus A$, where $A = \mathbb{Z}_2$ for non-planar graphs and $A = \mathbb{Z}$ for planar graphs.

Proof.

• For K_5 and $K_{3,3}$ every phase $\phi_Y = 0$ or π . By Kuratowski's theorem a non-planar graph contains a subgraph which is isomorphic to K_5 or $K_{3,3}$.

メロメ メ御 メメ ヨメ メヨメ

Theorem

For a 3-connected simple graph, $H_1(C_2(\Gamma))=\mathbb{Z}^{\beta_1(\Gamma)}\oplus A$, where $A = \mathbb{Z}_2$ for non-planar graphs and $A = \mathbb{Z}$ for planar graphs.

Proof.

- For K_5 and $K_{3,3}$ every phase $\phi_Y = 0$ or π . By Kuratowski's theorem a non-planar graph contains a subgraph which is isomorphic to K_5 or $K_{3,3}$.
- For planar graphs the anyon phase can be introduced by drawing the graph in the plane and integrating the anyon vector potential $\frac{\alpha}{2\pi}\hat{z} \times \frac{r_1 - r_2}{|r_1 - r_2|}$ $\frac{r_1-r_2}{|r_1-r_2|^2}$ along the edges of the two-particle graph, where r_1 and r_2 are the positions of the particles.

メロメ メ御 メメ ヨメ メヨメ

Summary

- Full classification of abelian quantum statistics on graphs by decomposing graph in 1-, 2- and 3-connected components.
- Physical insight into dependance of statistics on graph connectivity.
- Interesting new features of graph statistics.
- Statistics incorporated in gauge potential.
- 暈 JH, JP Keating, JM Robbins and A Sawicki, "n-particle quantum statistics on graphs," Commun. Math. Phys. (2014) 330 1293–1326 arXiv:1304.5781
- **JH, JP Keating and JM Robbins, "Quantum statistics on** graphs," Proc. R. Soc. A (2010) doi:10.1098/rspa.2010.0254 arXiv:1101.1535

メロメ メ御 メメ ヨメ メヨメ