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Our work concerns the anisotropic XY spin chain, which is an infinite se-
quence of spin-1/2 particles interacting through a specific nearest neighbor in-
teraction. The state of each particle is described by an element of C2, so the
state of a finite “box” Λ = [m,n] ∩ Z is described by an element of ⊗nj=mC2.
The Hamiltonian on Λ is

H(Λ) =

n−1∑
j=m

µj [(1 + γj)σ
(x)
j σ

(x)
j+1 + (1− γj)σ(y)

j σ
(y)
j+1] +

n∑
j=m

νjσ
(z)
j ,

where σ
(x)
j , σ

(y)
j , σ

(z)
j are the usual Pauli matrices acting on spin j. We also

assume that µ, γ, ν are bounded sequences and that all µj 6= 0.
The support of an operator A, denoted suppA, is the smallest set S such that

A can be represented as a tensor product of an operator on S and the identity
on Λ \S. If two operators, A and B, have disjoint supports, then [A,B] = 0, so

time-propagation of A can be quantified by bounds on ‖[eitH(Λ)

Ae−itH
(Λ)

, B]‖.

Theorem 1 (Lieb–Robinson, Nachtergaele–Sims). For any Λ = [m,n]∩Z, any
operators A,B with disjoint supports and all t ∈ R,∥∥∥[τ

(Λ)
t (A), B]

∥∥∥ ≤ C ‖A‖ ‖B‖ e−η(d(S1,S2)−v|t|) (1)

with uniform constants η, v > 0 and a constant C which can depend solely on
the size of the interaction boundaries of S1, S2. If we restrict to operators with
non-interlacing supports, max suppA < min suppB, then C is uniform as well.

The quantity v above is thought of as the velocity, as the Lieb–Robinson
bound is a statement about exponential decay beyond the distance v|t|. In
the case of γj = 0, constant µj , and suitable random i.i.d. νj , Hamza–Sims–
Stolz proved a zero-velocity Lieb–Robinson bound, which should be viewed as
a localization result. We were interested in capturing the opposite effect of
ballistic transport by proving that, in some spin chains, there is a non-zero
lower bound on the velocity v.
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Theorem 2 (DLY). For the anisotropic XY chain on Z described above, with
periodic sequences of µj ∈ R \ {0}, γj ∈ R \ {±1}, νj ∈ R, there exists a v0 > 0
such that if the Lieb-Robinson bound (1) holds for some C, η, v in the sense of
Theorem 1, then v ≥ v0.

Our proof is based on an observation of Lieb–Schultz–Mattis that the dy-
namics of the XY spin chain is closely related to the dynamics of a block Jacobi
matrix. Hamza–Sims–Stolz used this to prove an upper bound on propagation
in the random case, and we use it to prove a lower bound on propagation in
the periodic case, reducing the problem to ballistic transport for periodic block
Jacobi matrices.

Block Jacobi matrices are operators J : `2(Z)m → `2(Z)m of the form

(Ju)n = a∗n−1un−1 + bnun + anun+1

where an and bn are m×m complex matrices with det an 6= 0 and b∗n = bn.
While ballistic transport for Jacobi matrices is considered folklore, the re-

sults available in the literature concern only scalar Jacobi matrices and do not
guarantee a non-zero velocity. We proved a result which does, using an approach
of Asch–Knauf for periodic (continuum) Schrödinger operators.

Theorem 3 (DLY). Let J be a periodic block Jacobi matrix as described above.
Let X be the position operator, (Xu)n = nun. There is a bounded self-adjoint
operator Q with KerQ = {0} such that for any ψ in the domain of X,

lim
t→∞

1

t
eitJXe−itJψ = Qψ.

To illustrate how this is a statement about ballistic motion, notice that it
implies, in particular, that

lim
t→∞

1

t
‖Xe−itJψ‖ = ‖Qψ‖ 6= 0,

i.e., the expectation value of position at time t behaves as ‖Qψ‖ t.
If J is the block Jacobi matrix corresponding to the spin chain of Theorem

2, then the velocity v0 of Theorem 2 is simply v0 = ‖Q‖.
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