Point-Map Probabilities of a Point Process

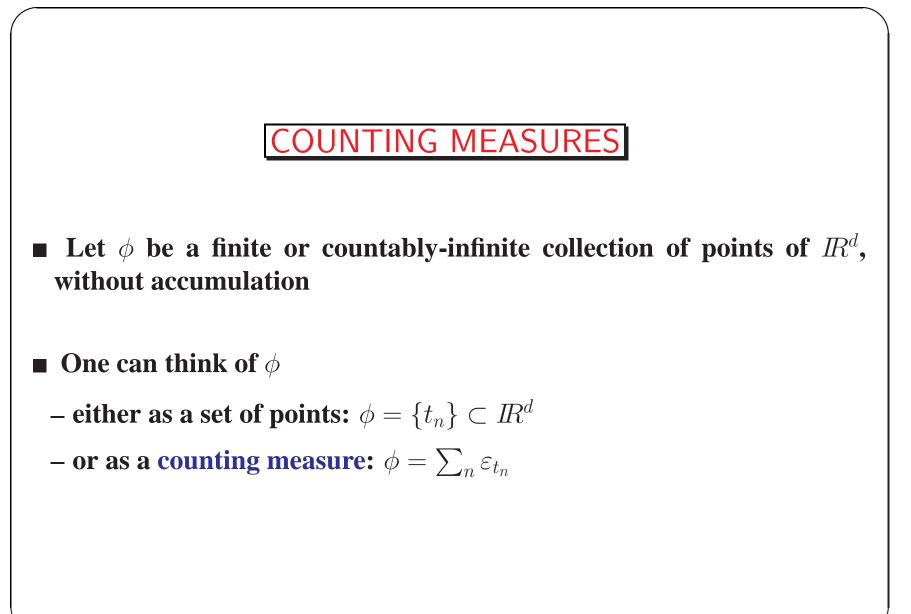
F. Baccelli, UT AUSTIN

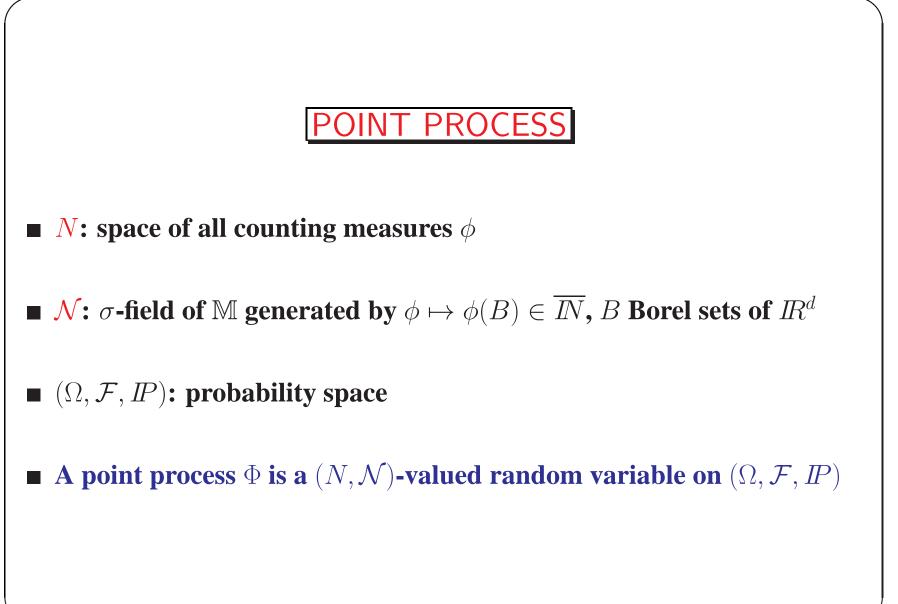
Joint work with M.O. Haji-Mirsadeghi

TexAMP, Austin, November 23, 2014

Structure of the talk

- Point processes
- Palm probabilities
- Mecke's invariant measure equation
- Point maps
- Dynamical systems
- Point map probabilities





STATIONARY POINT PROCESS

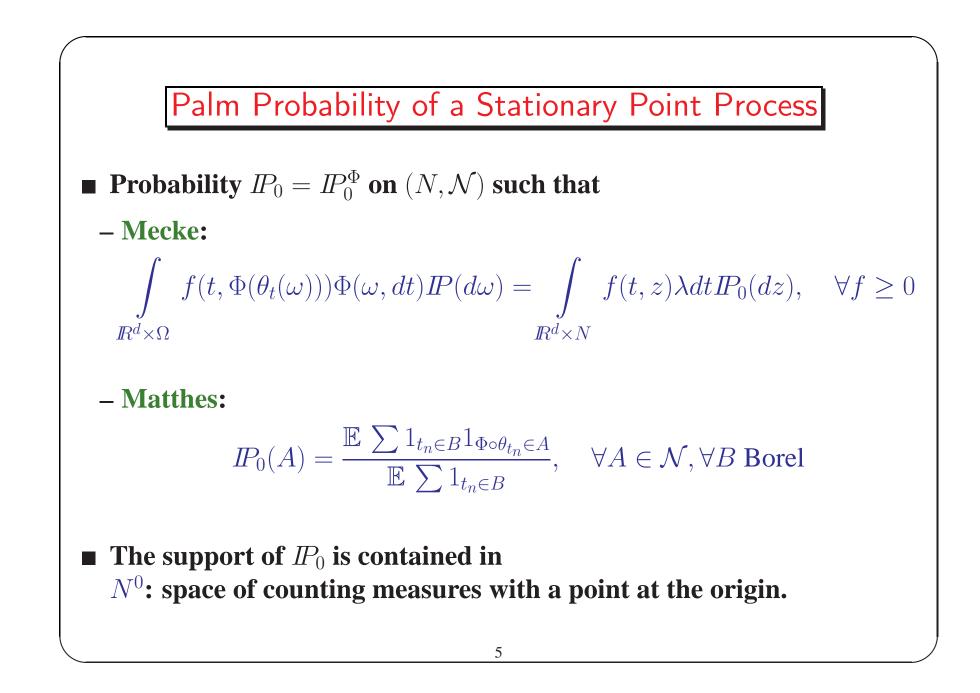
• Let $\{\theta_t\}_{t \in \mathbb{R}^d}$ be a measure preserving flow on $(\Omega, \mathcal{F}, \mathbb{I}^p)$

• A point process Φ is stationary if

the translations of Φ are a factor of the flow θ_t :

 $\Phi \circ \theta_t(B) = \Phi(B+t) \quad \forall t, \forall B$

• Implies the existence of an intensity λ assumed finite below



Palm Probability of a Stationary Point Process (continued)

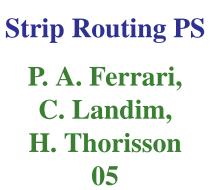
Interpretation

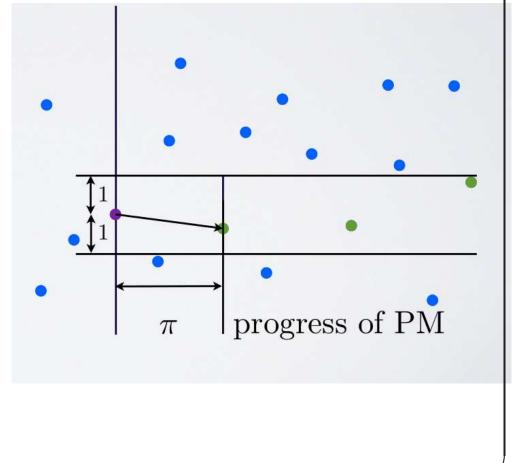
- Conditional: distribution of the point process given that the origin is included in the point process
- Ergodic: empirical distribution of the sequence $\{\Phi \circ \theta_{t_n}\}$ for all points t_n of Φ in a large ball

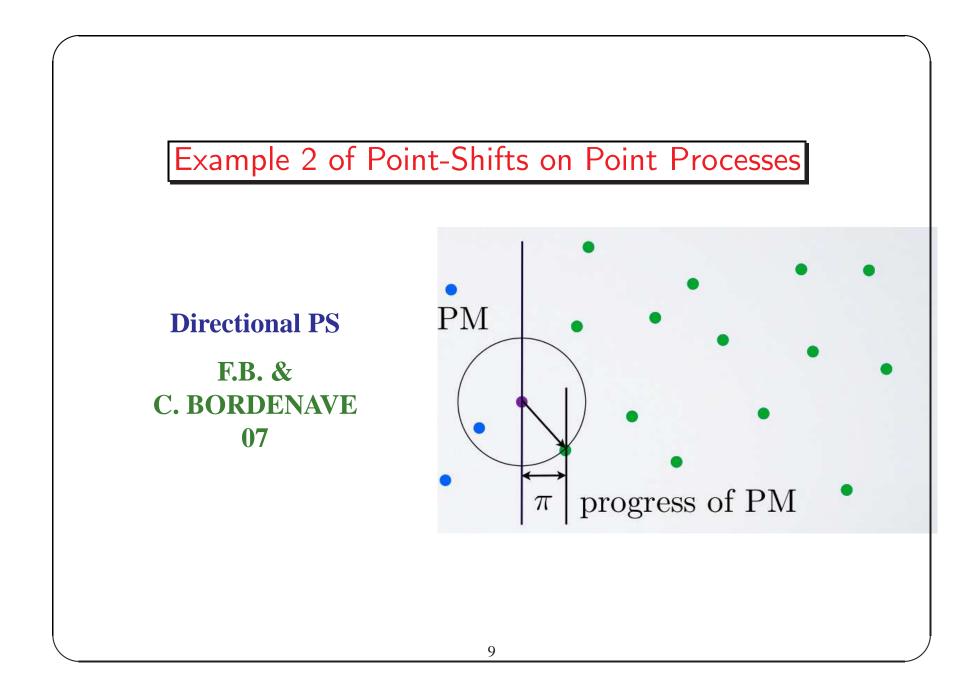
Point-Shift on Point Processes

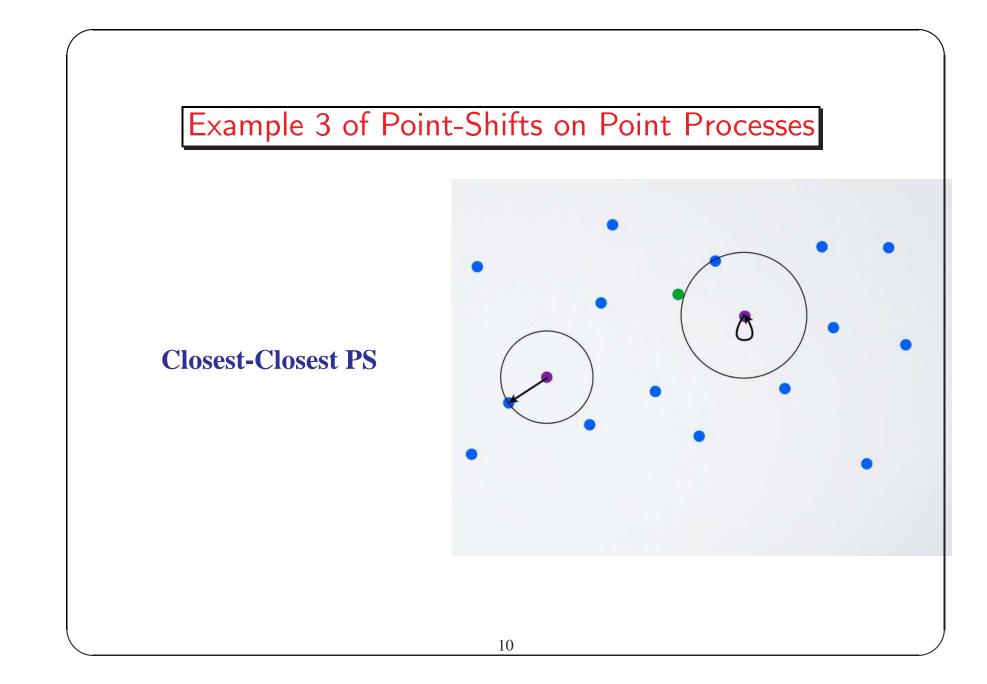
- **•** Maps each point of Φ to some point of Φ
- Point-Shifts in the literature:
 - Point-Shift H. Thorisson 00
 - Allocation rule e.g. by A. Holroyd & Y. Peres 05
- Initial motivations:
 - Palm calculus
 - Navigation on the points of Φ
 - Cracks in materials

Example 1 of Point-Shifts on Point Processes







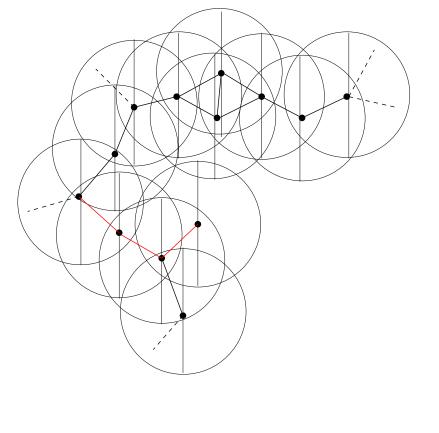


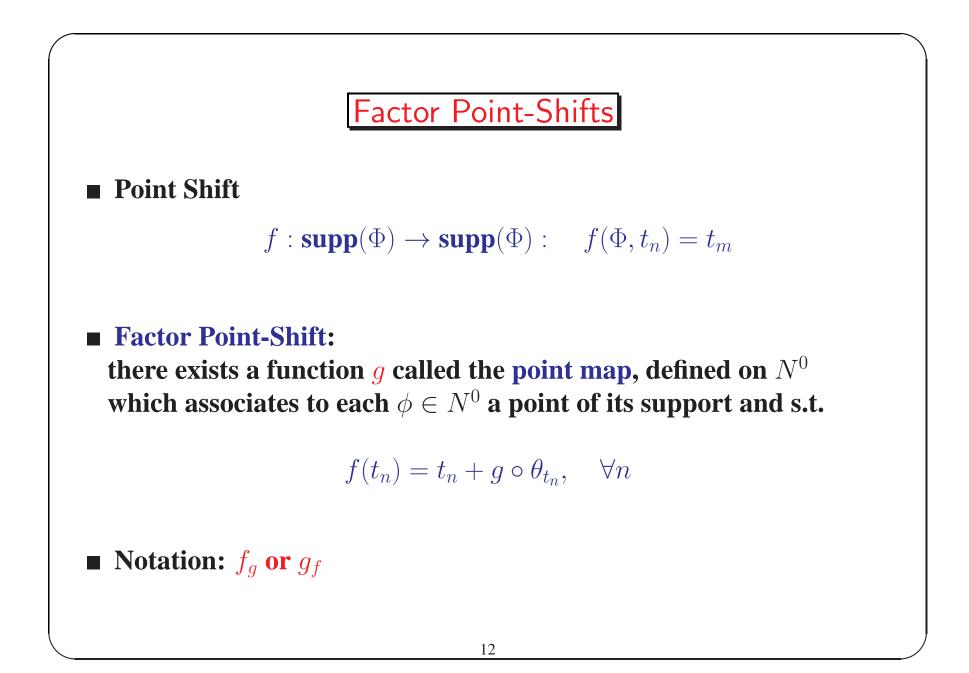
Example 4 of Point Shifts on Point Processes

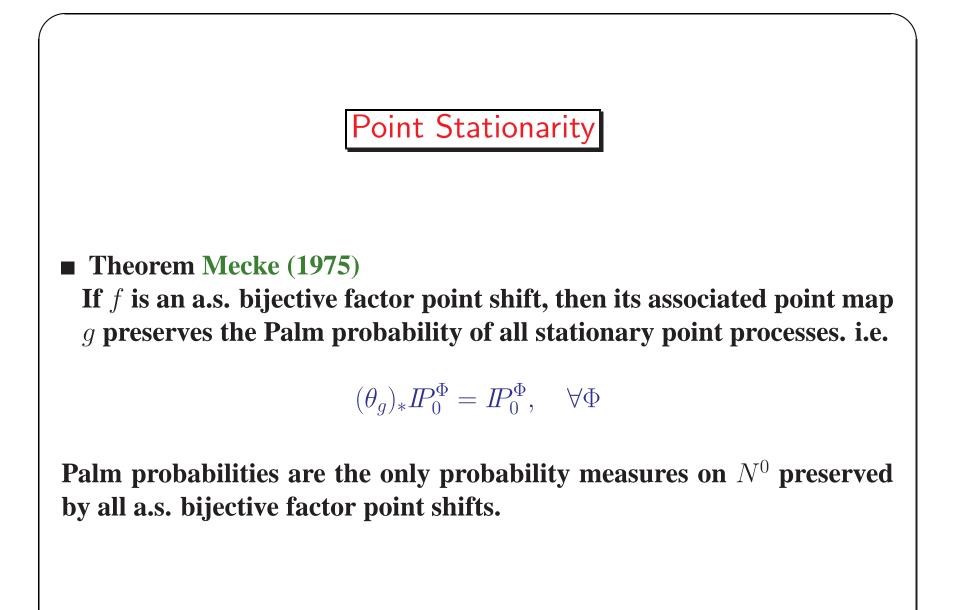
11

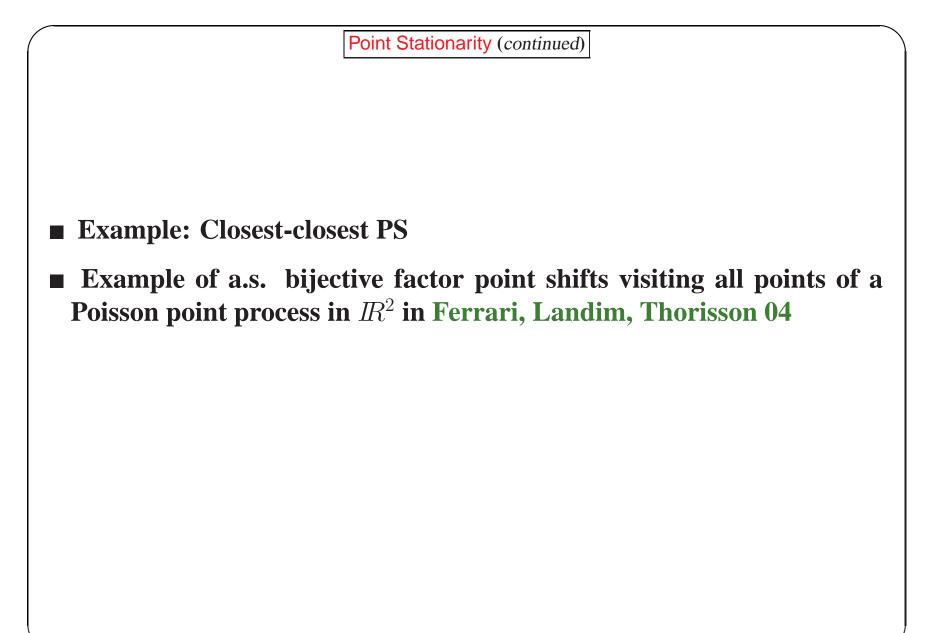
Directional PS on the supercritical random geometric graph

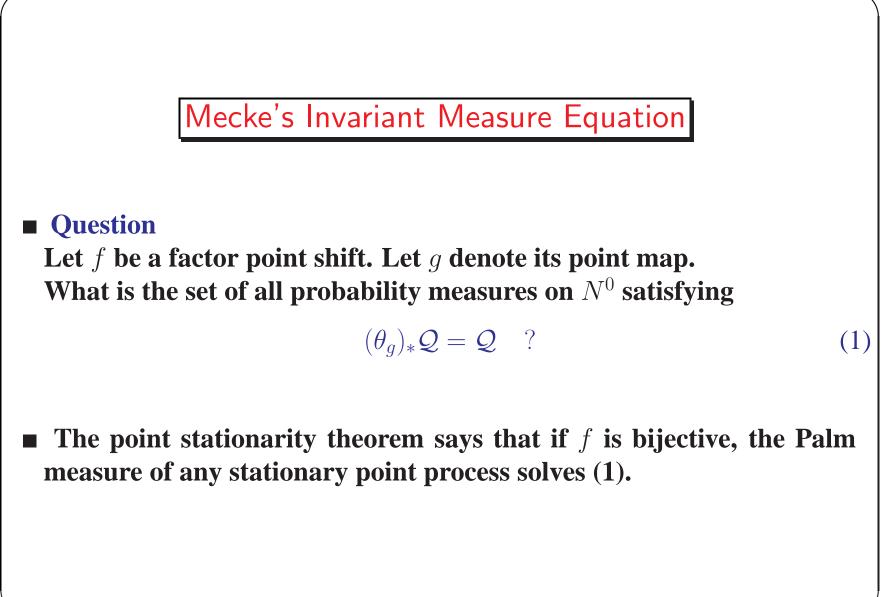
The PS a.s. leads to a trap even when departing from points in the infinite connected component.







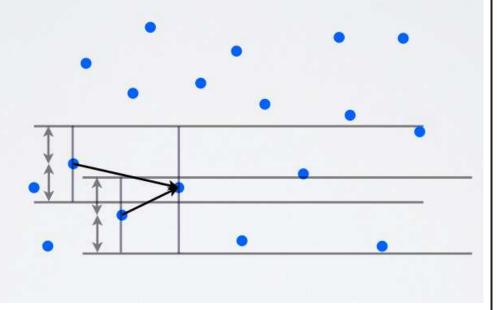


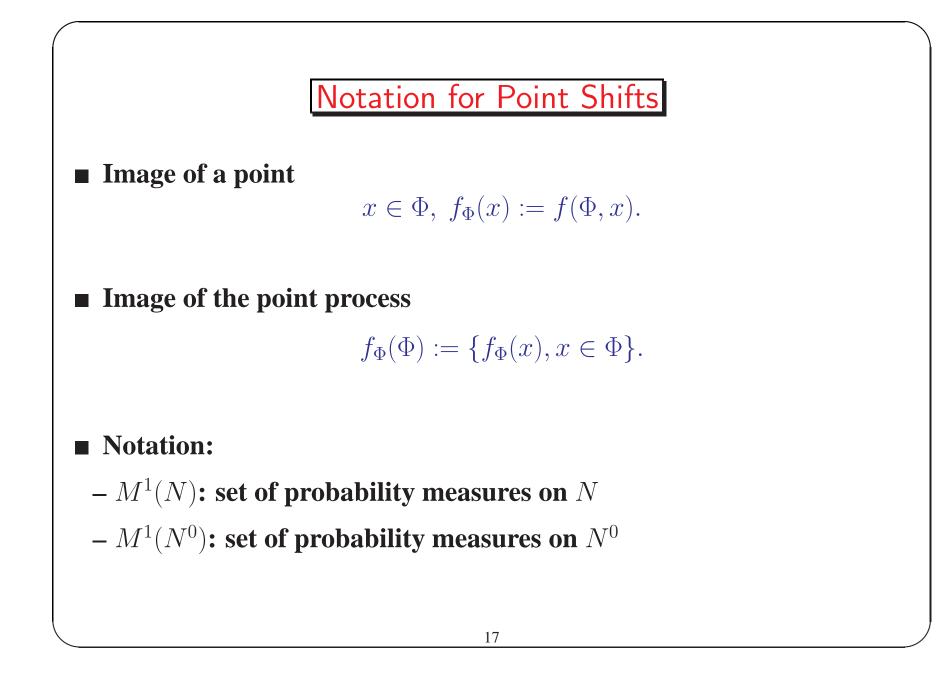


Invariant Measure Equation

Question If f is not bijective, can we construct a solution to (1) from the Palm probability of a stationary point process?

Neither strip PM nor directional PM are bijective. Can we find solutions to (1) for these PMs?





Four Actions of $I\!N$

• Actions $\pi = {\pi_n}$ of $(\mathbb{N}, +)$ on the topological space X:

1 X = N, equipped with the vague topology, and for all $n \in \mathbb{N}$,

 $\pi_n(\phi) = f_\phi^n \phi$

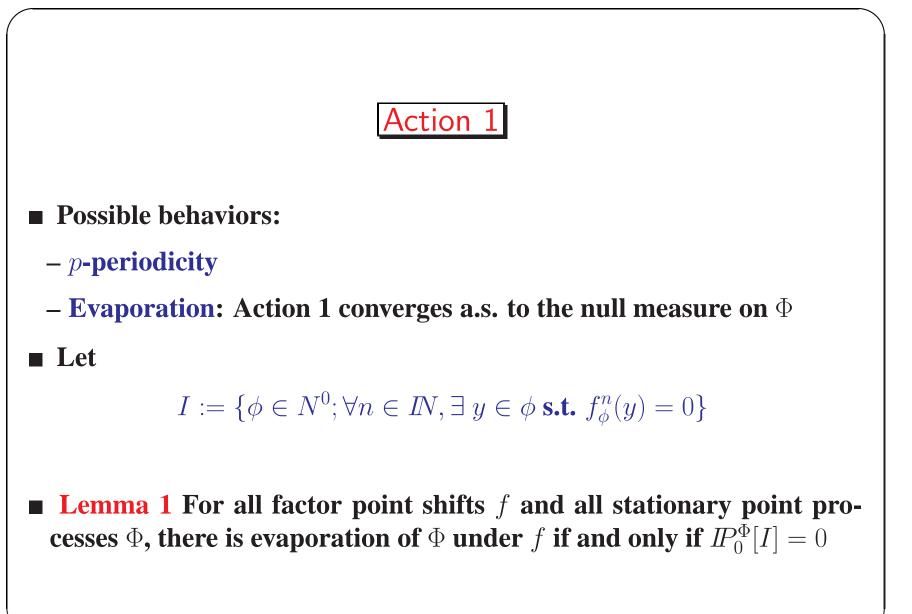
 $1^* X = M^1(N)$, equipped with the weak convergence of probability measures on N, and for all $Q \in X$, $n \in IN$,

 $\pi_n(\mathcal{Q}) = (f_\phi \phi)^n_* \mathcal{Q} \in M^1(N)$

2 $X = N^0$, equipped with vague topology, and $\forall \phi \in N^0$ and $n \in \mathbb{N}$, $\pi_n(\phi) = \theta_{g^n(\phi)}(\phi) \in N^0$

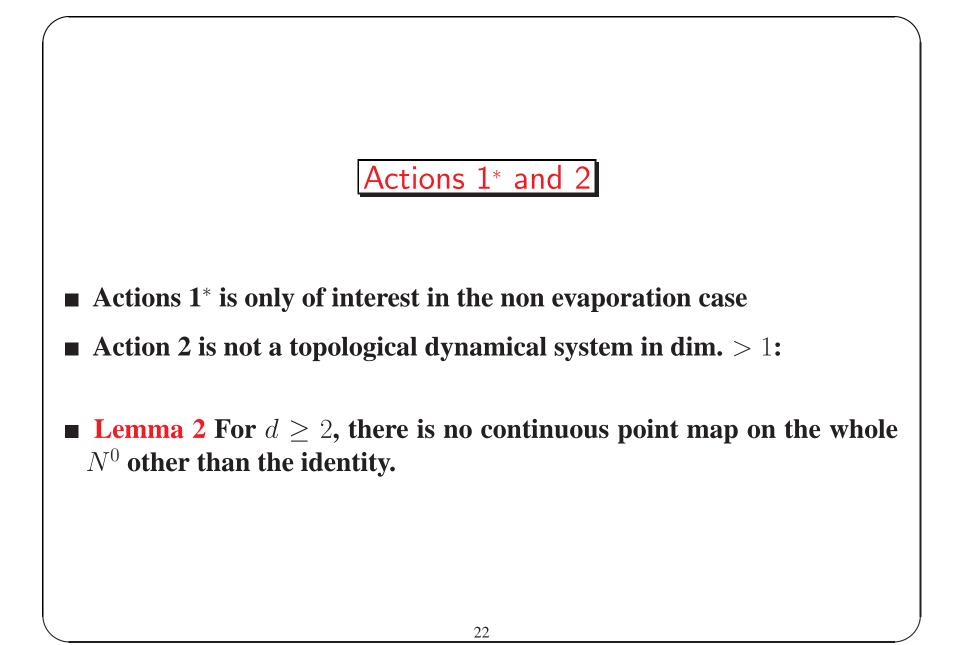
 $2^* X = M^1(N^0)$, equipped with the same topology as $M^1(N)$, and for all $\mathcal{Q} \in M^1(N^0)$ and $n \in \mathbb{N}$,

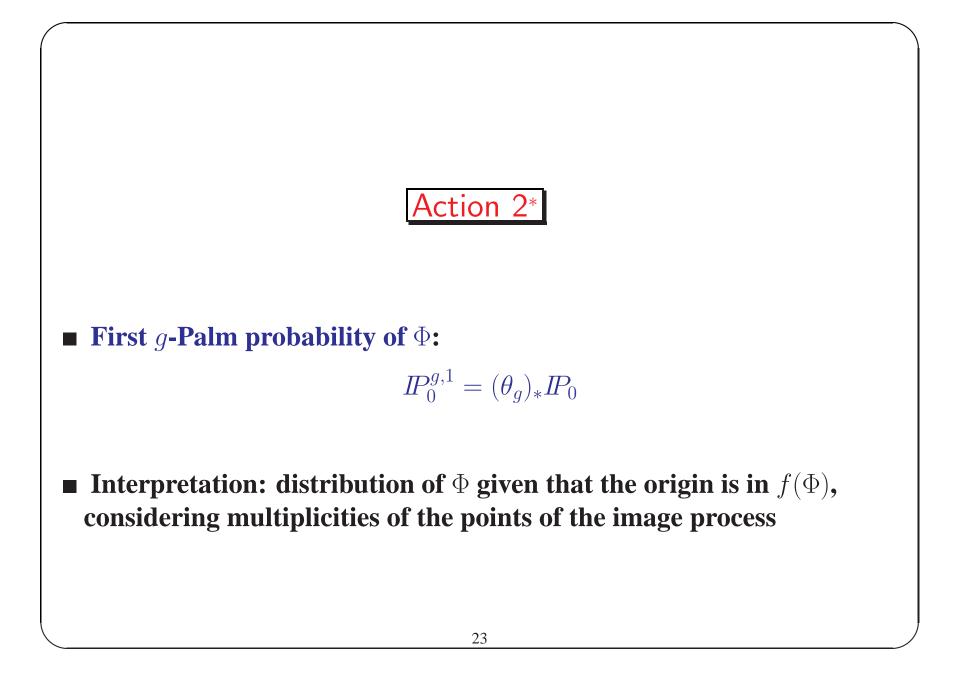
 $\pi_n(\mathcal{Q}) = (\theta_{g^n(\phi)})_* \mathcal{Q} \in M^1(N^0)$



Action 1 (continued)

- **Example of p-periodicity**
 - Directional PS on the super-critical RGG: p = 1
 - Closest-Closest PS: p = 2
- Examples of Evaporation
 - Ferrari, Landim, Thorisson 04: If Φ is a stationary Poisson point process in \mathbb{R}^2 , then the strip PS evaporates Φ
 - The same holds true for the directional PS on a stationary Poisson point process in $I\!\!R^2$





Action 2^{*} (continued)

■ *n*-th *g*-Palm probability of Φ : distribution of Φ given that 0 is in $f^n(\Phi)$

 $I\!P_0^{g,n} = (\theta_g)_* I\!P_0^{g,n-1}$

taking multiplicities into account.

Interpretation: distribution of Φ seen from a typical point of $f^n(\Phi)$.

Definition of Point Map Probabilities

■ Let

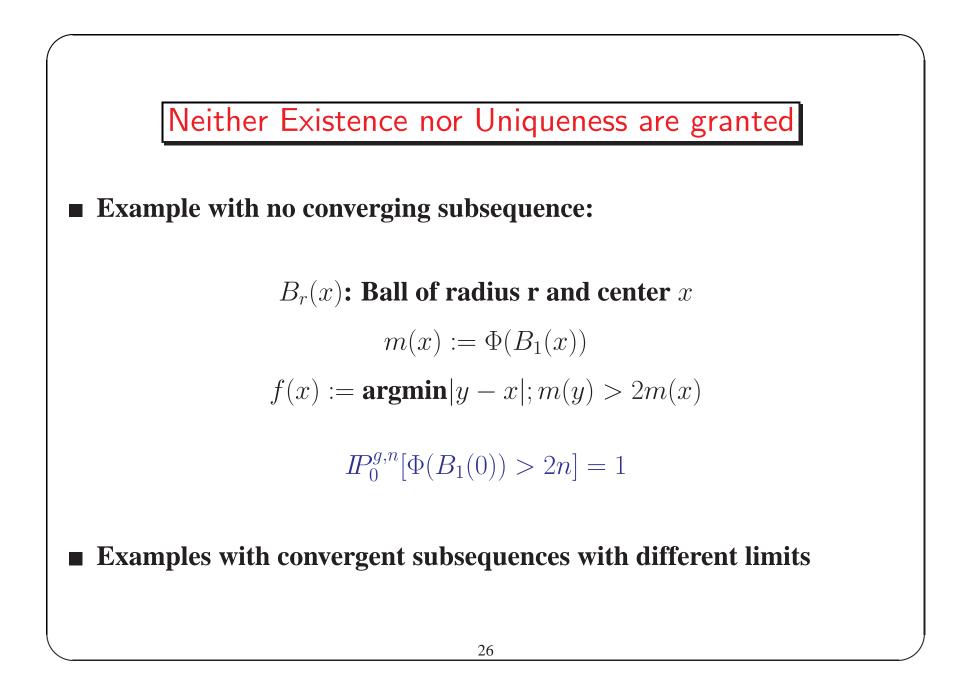
- g be a point map
- Φ be a stationary point process with Palm distribution \mathbb{P}_0

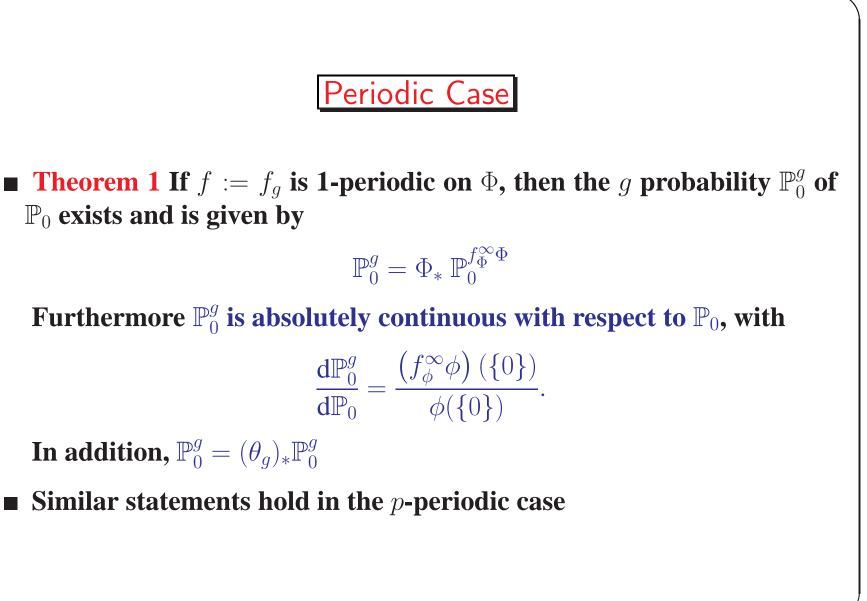
Definition

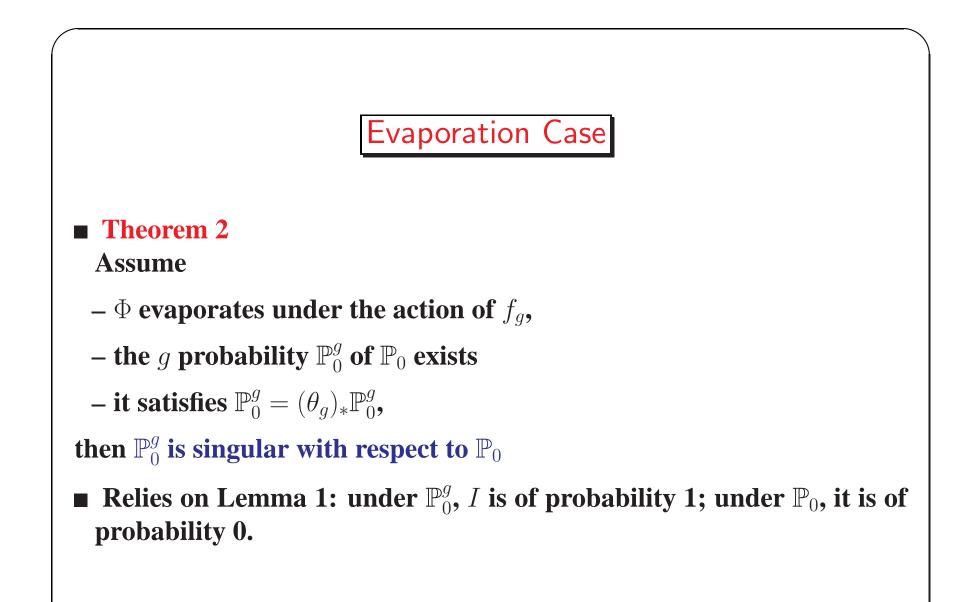
- Every element of the ω -limit set of \mathbb{P}_0 under the action of $\{(\theta_{g^n})_*\}_{n\in\mathbb{N}}$ will be called a g probability of \mathbb{P}_0
- If the limit of the sequence

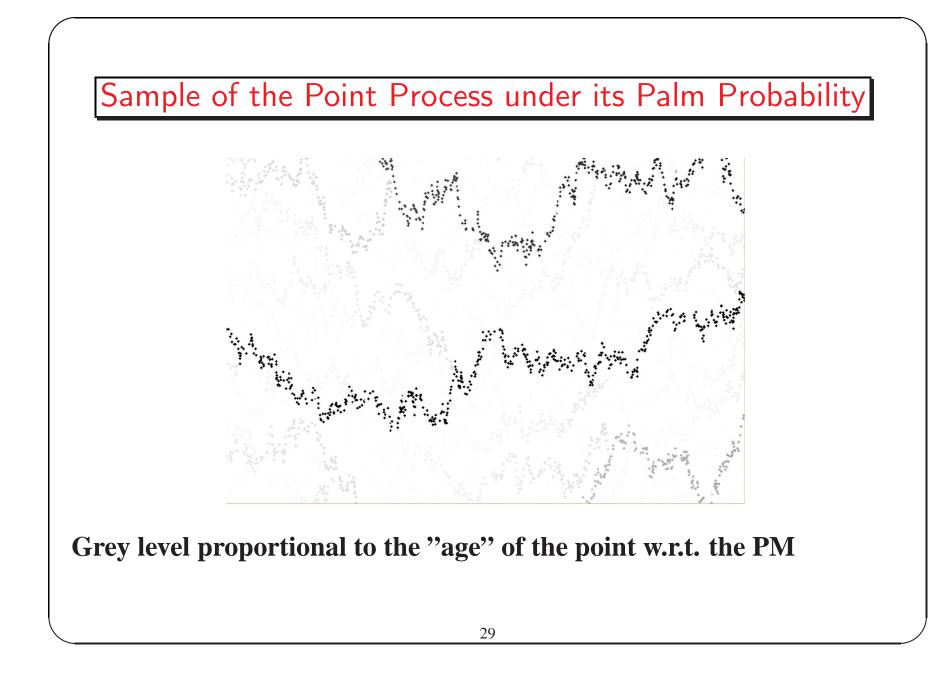
$$\{(\theta_{g^n})_* \mathbb{P}_0\}_{n=1}^{\infty} = \{\mathbb{P}_0^{g,n}\}_{n=1}^{\infty}$$

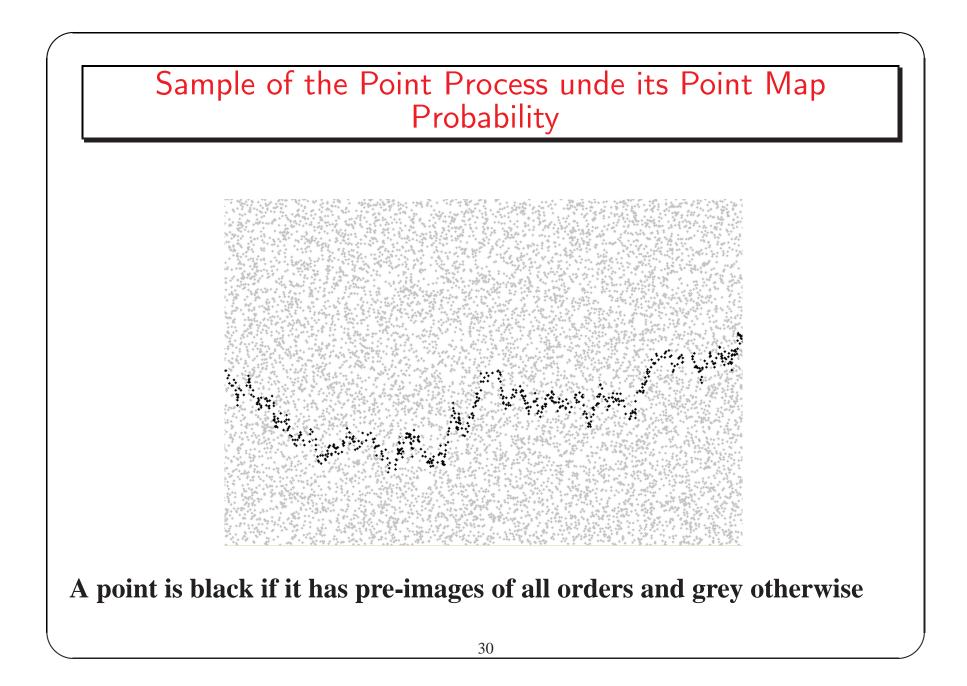
exists, it is called the g probability of \mathbb{P}_0 and denoted by \mathbb{P}_0^g











Mecke's Invariant Measure Equation

Consider the Cesàro sums

$$\widetilde{\mathbb{P}}_0^{g,n} := \frac{1}{n} \sum_{i=0}^{n-1} \mathbb{P}_0^{g,i}, \quad n \in \mathbb{N}.$$

When the limit of $\widetilde{\mathbb{P}}_{0}^{g,n}$ exists (w.r.t. the topology of $M^{1}(N^{0})$), let

$$\widetilde{\mathbb{P}}_0^g := \lim_{n \to \infty} \frac{1}{n} \sum_{i=0}^{n-1} \mathbb{P}_0^{g,i}.$$

In general, $\widetilde{\mathbb{P}}_0^g$ is not a g probability.

Mecke's Invariant Measure Equation (continued)

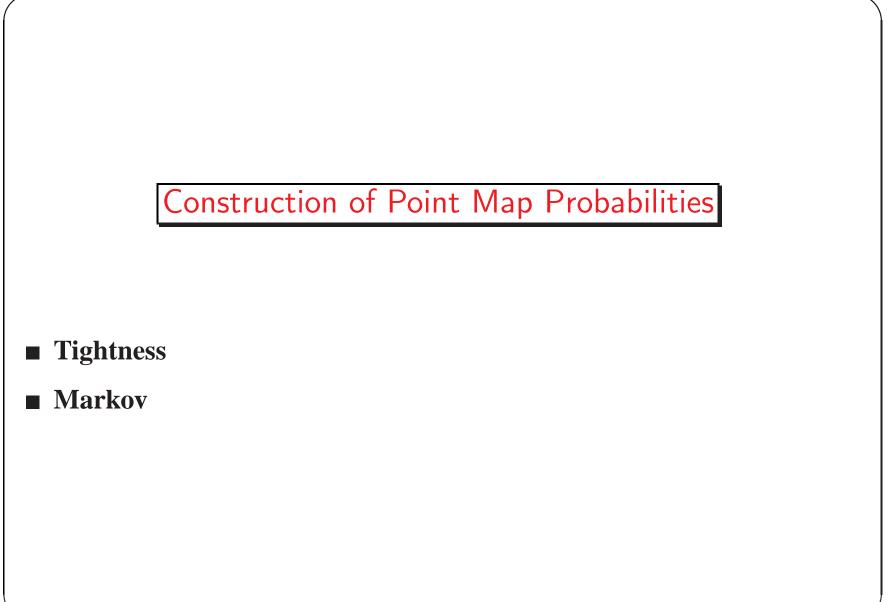
Theorem 3

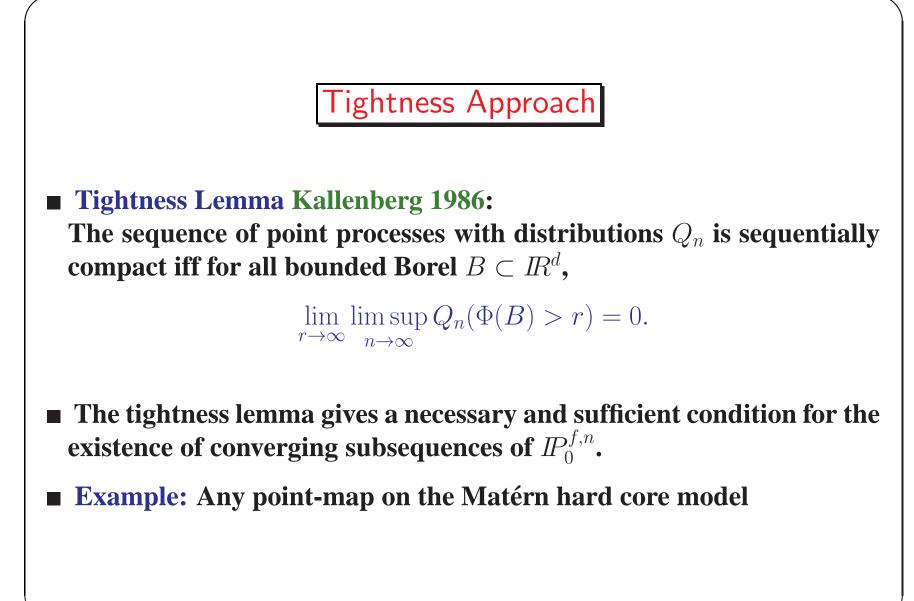
Assume

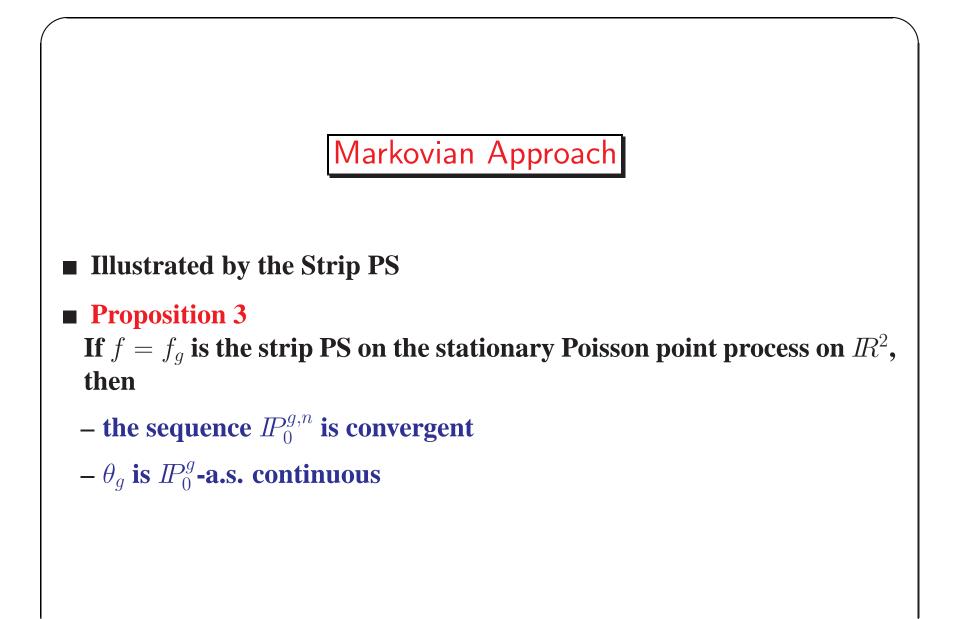
- there exists a subsequence $\{\widetilde{\mathbb{P}}_0^{g,n_i}\}_{i=1}^\infty$ converging to a probability $\widetilde{\mathbb{P}}_0^g$
- $(\theta_g)_*$ is continuous at $\widetilde{\mathbb{P}}_0^g$

Then $\widetilde{\mathbb{P}}_0^g$ solves Mecke's Invariant Measure Equation

- **Proposition 1** If θ_q is $\widetilde{\mathbb{P}}_0^g$ -almost surely continuous, then $(\theta_q)_*$ is continuous at $\widetilde{\mathbb{P}}_0^g$
- **Proposition 2** If g is $\widetilde{\mathbb{P}}_0^g$ -almost surely continuous, then $(\theta_g)_*$ is $\widetilde{\mathbb{P}}_0^g$ -continuous



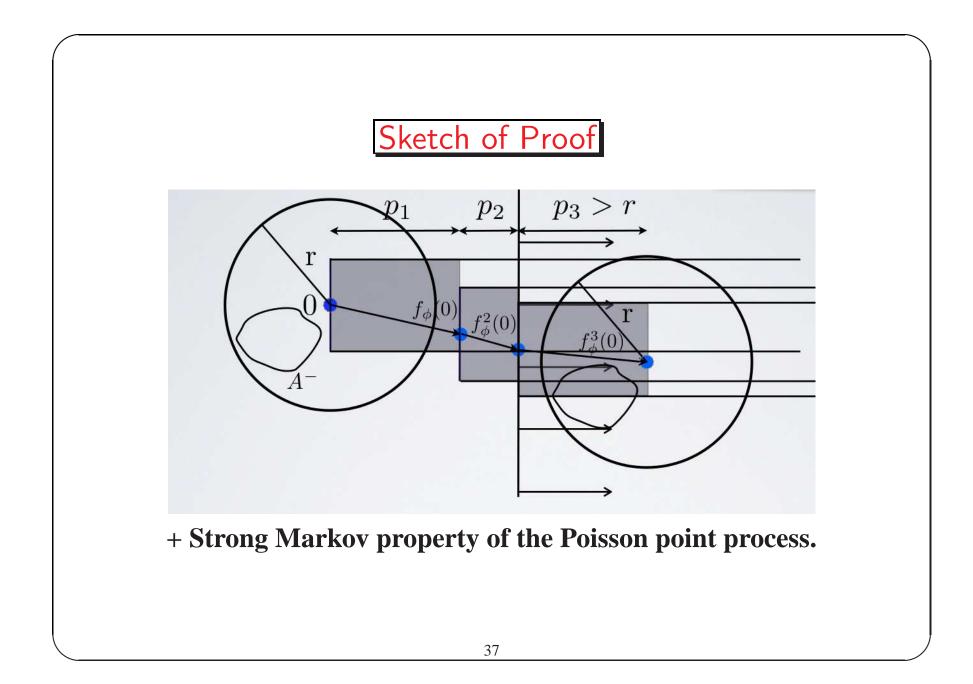




Sketch of Proof B_r⁺(0): right open half disk of radius r B_r⁻(0): left closed half disk of radius r

• It is sufficient to show the convergence in $B_r^+(0)$ and $B_r^-(0)$ for all r.

•
$$A^+ \subset B^+_r(0)$$
 and $A^- \subset B^-_r(0)$.



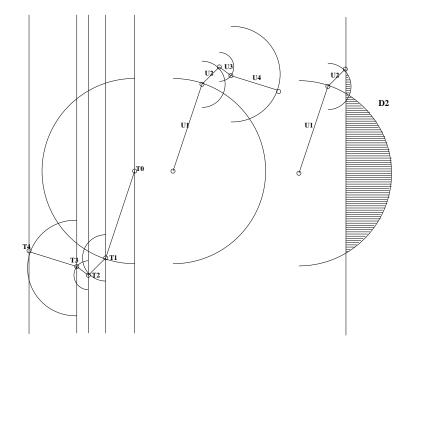
Directional PM

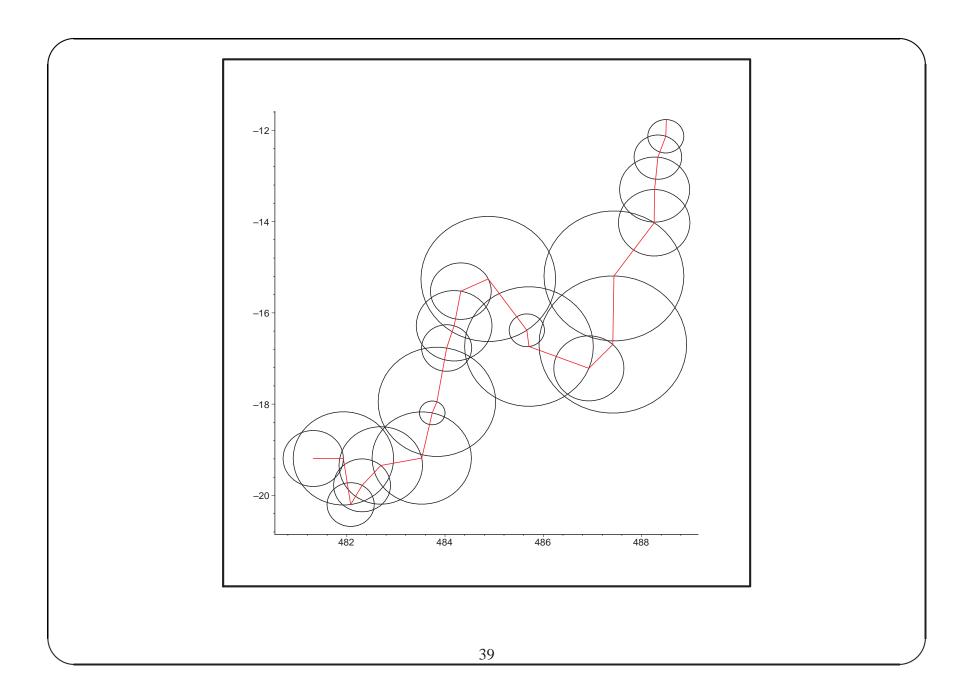
The edge process $(U_n = T_n - T_{n+1})$ is not a Markov Chain.

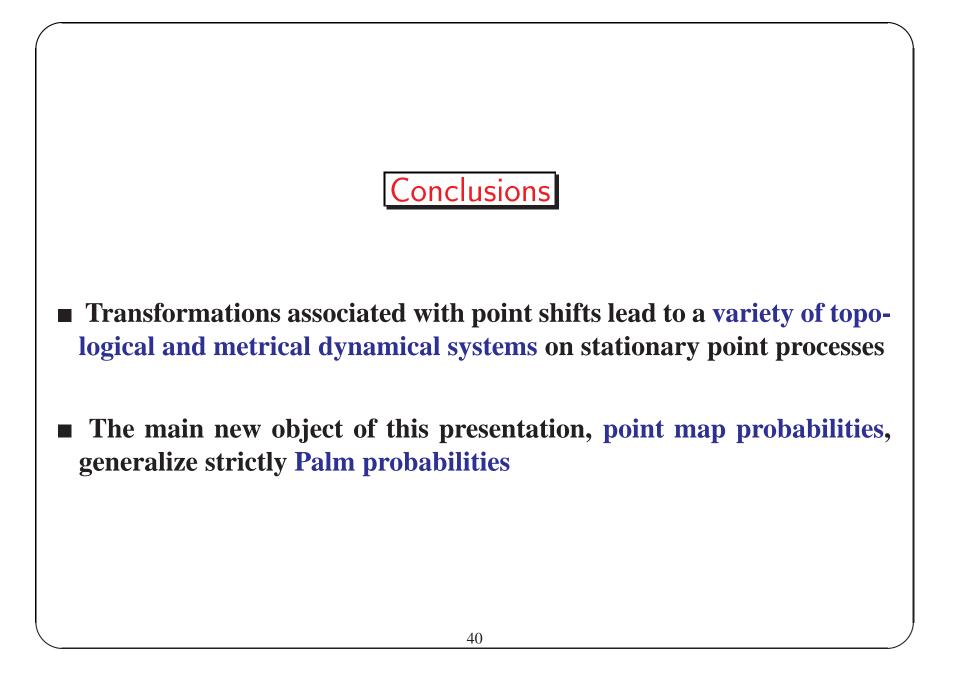
There exists a sequence of *finite* **stopping times** (τ_k) **s.t.**

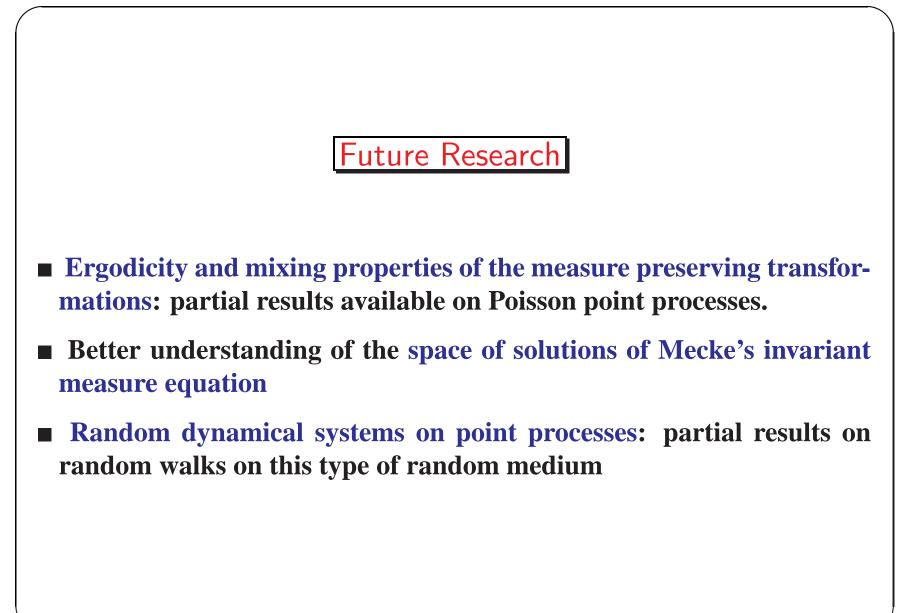
 $\Phi_k = (U_{\tau_k}, \dots, U_{\tau_{k+1}-1})$

is a Ψ -irreducible, aperiodic Markov Chain which admits a small set and is geometrically ergodic.









F.B. and M.O. Mirsadeghi Compactification of the Action of a Point-Map on the Palm Probability of a Point Process Arxiv, 2014