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The focusing nonlinear Schrödinger equation

I A complex-valued function u of two variables x and t, where
x ∈ Rd is the space variable and t ∈ R is the time variable, is
said to satisfy a d-dimensional focusing nonlinear Schrödinger
equation (NLS) with nonlinearity parameter p if

i ∂tu = −∆u − |u|p−1u.

I The equation is called “defocusing” if the term −|u|p−1u is
replaced by +|u|p−1u. In this talk, we will only consider the
focusing case.

I The NLS is one of the most widely studied nonlinear
dispersive equations. Has many applications.
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Solitons

I For the defocusing NLS, it is known that in many situations,
the solution “radiates to zero” as t →∞.

This means that
for every compact set K ⊆ Rd ,

lim
t→∞

∫
K
|u(x , t)|2dx = 0.

I In the focusing case this may not happen.

I Demonstrated quite simply by a special class of solutions
called “solitons” or “standing waves”.

I These are solutions of the form u(x , t) = v(x)e iωt , where ω is
a positive constant and the function v is a solution of the
soliton equation

ωv = ∆v + |v |p−1v .

I Often, the function v is also called a soliton.
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The soliton resolution conjecture

I Little is known about the long-term behavior of solutions of
the focusing NLS.

I One particularly important conjecture, sometimes called the
“soliton resolution conjecture”, claims that as t →∞, the
solution u(·, t) would look more and more like a soliton, or a
union of a finite number of receding solitons.

I The claim may not hold for all initial conditions, but is
expected to hold for “generic” initial data.

I In certain situations, one needs to impose the additional
condition that the solution does not blow up.

I Partially solved when d = 1 and p = 3, where the NLS is
completely integrable. In higher dimensions, some progress in
recent years. (See works of Kenig, Merle, Schlag, Tao,....)

I It is generally believed that proving a precise statement is “far
out of the reach of current technology”. See e.g. Terry Tao’s
blog entry on this topic, or Avy Soffer’s ICM lecture notes.
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Mass and energy

I The NLS has two well-known invariants, namely, mass

M(u) :=

∫
Rd

|u(x)|2dx

and energy

H(u) :=
1

2

∫
Rd

|∇u(x)|2dx − 1

p + 1

∫
Rd

|u(x)|p+1dx .

I That is, if u(x , t) is a solution of the NLS, then M(u(·, t))
and H(u(·, t)) remain constant over time.
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Invariant measures for the NLS

I One approach to understanding the long-term behavior of
global solutions is through the study of invariant Gibbs
measures.

I Roughly, the idea is as follows.
I The NLS is an infinite dimensional Hamiltonian flow.
I Finite dimensional Hamiltonian flows preserve Lebesgue

measure (Liouville’s theorem).
I Extending this logic, one might expect that “Lebesgue

measure” on the space of all functions of suitable regularity, if
such a thing existed, would be an invariant measure for the
flow.

I Since the flow preserves energy, this would imply that Gibbs
measures that have density proportional to e−βH(u) with
respect to this fictitious Lebesgue measure (where β is
arbitrary) would also be invariant for the flow.

I In statistical physics parlance, this is the Canonical Ensemble.
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Making sense of the Canonical Ensemble

I Lebowitz, Rose & Speer (1988) were the first to make sense
of the canonical ensemble for the NLS.

I Invariance was rigorously proved by Bourgain (1994, 1996) in
d = 1 for the focusing case, and d ≤ 2 for defocusing.

I Invariance in the one-dimensional case was also proved by
McKean (1995) and Zhidkov (1991).

I Other important contributions from Bourgain, McKean,
Vaninsky, Zhidkov, Rider, Brydges, Slade,....

I Significant recent progress on canonical invariant measures for
the NLS and other equations by many authors (Burq,
Tzvetkov, Oh, Staffilani, Bulut,Thomann, Nahmod....).

I However, all in all, not much is known in d ≥ 3. In fact, it is
possible that the idea does not work at all in d ≥ 3.
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The microcanonical ensemble

I Instead of considering the Canonical Ensemble of Lebowitz,
Rose & Speer, one may alternatively consider the
Microcanonical Ensemble.

I The microcanonical ensemble, in this context, is the
restriction of our fictitious Lebesgue measure on function
space to the manifold of functions satisfying M(u) = m and
H(u) = E , where m and E are given.
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The microcanonical ensemble contd.

I How to make sense of the microcanonical ensemble for the
NLS?

I One way: Discretize space and pass to the continuum limit.
(This was Zhidkov’s line of attack for the invariance of the
grand canonical ensemble in d = 1. McKean and coauthors
used Brownian motion; Bourgain and others used Fourier
expansions.)

I Some physicists have briefly investigated this approach, with
inconclusive results.

I A preliminary attempt was made in C. & Kirkpatrick (2010).
Could not pass to the continuum limit.

I In recent work, I proved that it is indeed possible to take the
discretized microcanonical ensemble to a continuum limit in
such a way that very conclusive results can drawn about it in
all dimensions. This is the topic of this talk.
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discretized microcanonical ensemble to a continuum limit in
such a way that very conclusive results can drawn about it in
all dimensions. This is the topic of this talk.
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Equivalence classes

I If u satisfies M(u) = m and H(u) = E , so does the function

v(x) := α0u(x + x0)

for any x0 ∈ Rd and α0 ∈ C with |α0| = 1.

I Thus, it is reasonable to first quotient the function space by
the equivalence relation ∼, where u ∼ v means that u and v
are related in the above manner.

I We will generally talk about functions and equivalence classes
as the same thing.
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Ground state solitons

I When p satisfies the “mass-subcriticality” condition
p < 1 + 4/d , it is known that there is a unique equivalence
class minimizing H(u) under the constraint M(u) = m.

I This equivalence class is known as the “ground state soliton”
of mass m.

I The ground state soliton has the following description:
I (Deep classical result) There is a unique positive and radially

symmetric solution Q of the soliton equation

ωQ = ∆Q + |Q|p−1Q

with ω = 1.
I For each λ > 0, let

Qλ(x) := λ2/(p−1)Q(λx).

Then each Qλ is also a soliton (with ω dependent on λ).
I For each m > 0, there is a unique λ(m) > 0 such that Qλ(m) is

the ground state soliton of mass m.
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Main result

Theorem (C., 2012; rough statement)

Suppose that p < 1 + 4/d , and that E is a real number bigger
than the ground state energy at a given mass m. If we attempt to
choose a function uniformly at random from all functions satisfying
M(u) = m and H(u) = E , by first discretizing the problem and
then passing to the infinite volume continuum limit, then the
resulting sequence of discrete random functions (equivalence
classes) converges in the L∞ norm to the ground state soliton of
mass m.
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Remarks

I Actually, this is a theorem about microcanonical invariant
measures of the discrete NLS. I do not construct an invariant
measure for the continuum NLS. The random function — and
not the measure — is taken to a continuum limit.

I Important note: The theorem is not saying that the
microcanonical probability measure concentrates in a
neighborhood of the ground state soliton. In fact, the
measure concentrates on functions of mass m and energy E ,
which do not contain the ground state soliton at all! What it
says is that a typical function with mass m and energy E
looks like a ground state soliton. The excess energy is
contained in small wiggles that are almost invisible.

I The situation is similar to the dynamical version of the soliton
resolution conjecture: If initial data has mass m and energy E ,
then it has the same mass and energy at all times, but looks
more and more like the ground state soliton as t →∞.
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How to discretize?

I Let Vn = {0, 1, . . . , n − 1}d = (Z/nZ)d .

I Imagine this set embedded in Rd as hVn, where h > 0 is the
mesh size.

I hVn is a discrete approximation of the box [0, nh]d .

I Endow Vn with the graph structure of a discrete torus.

I The (discretized) mass and energy of a function u : Vn → C
are defined as

M(u) := hd
∑
x∈Vn

|u(x)|2,

and

H(u) :=
hd

2

∑
x,y∈Vn
|x−y|=1

∣∣∣∣u(x)− u(y)

h

∣∣∣∣2 − hd

p + 1

∑
x∈Vn

|u(x)|p+1.
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How to discretize? (contd.)

I Fixing ε > 0, E ∈ R and m > 0, define

Sε,h,n(E ,m) := {u ∈ CVn : |M(u)−m| ≤ ε, |H(u)− E | ≤ ε}.

I Let f be a random function chosen uniformly from the finite
volume set Sε,h,n(E ,m).

I Extend f to a step function f̃ on Rd in the natural way.
I There are three discretization parameters involved here:

I The mesh size h.
I The box size nh.
I The thickness ε of the annulus.

I The main theorem says that the equivalence class
corresponding to this random function f̃ converges to the
ground state soliton of mass m if (ε, h, nh) is taken to
(0, 0,∞) in an appropriate manner.
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Soliton resolution conjecture

I Does this theorem resolve the soliton resolution conjecture
(SRC), even for the discrete torus?

I Not clear, mainly because SRC is not a well-posed conjecture.
I However, note:

I The Lebesgue measure on the set of all functions with a given
mass and given energy is preserved by the NLS flow.

I The flow, therefore, decomposes this set into ergodic
components.

I Let us say that an ergodic component satisfies SRC if
membership of the initial data in that component implies
long-term convergence to a soliton.

I Suppose that we put a probability measure on the set of
ergodic components by weighing each component proportional
to volume.

I Our theorem then says that if an ergodic component is chosen
at random according to this probability measure, then the
component is highly likely to satisfy SRC.

I In this statistical sense, the theorem resolves SRC.
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to volume.

I Our theorem then says that if an ergodic component is chosen
at random according to this probability measure, then the
component is highly likely to satisfy SRC.

I In this statistical sense, the theorem resolves SRC.
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Proof sketch

I Difficult to summarize, since it is a 100 page paper.
Nevertheless, here is an attempt.

I Consider the discrete NLS on a large discrete torus. Let
‘mass’ and ‘energy’ be defined as before.

I Fix m and E , and let A be the set of all functions on this
torus with mass m and energy E .

I Given any f ∈ A, write f = f large + f small, where
f large(x) = f (x) wherever |f (x)| > ε and 0 elsewhere, and
f small(x) = f (x) wherever |f (x)| ≤ ε and 0 elsewhere. Here ε
is a small number, close to zero.

I Intuitively, f large is the ‘visible’ or ‘macroscopic’ part of f , and
f small is the ‘invisible’ or ‘microscopic’ part of f .

I Note that f ≈ f large in the L∞ norm.
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Proof sketch contd.

I Given any m′ ∈ [0,m] and E ′ ∈ [0,E ], let A(m′,E ′) be the set
of all f with mass m and energy E , such that mass of f large is
m′ and energy of f large is E ′.

I The main step of the proof is in estimating the size of the sets
A(m′,E ′).

I Suppose that the size of the largest of these sets
overwhelmingly dominates the rest. Let (m∗,E ∗) be the pair
where this maximum is attained. Then |A| ≈ |A(m∗,E ∗)|,
which means that if a function f is chosen uniformly from A,
then with high probability f large has mass m∗ and energy E ∗.

I Estimating the sizes of A(m′,E ′) via large deviation
calculations takes a 50-page chunk of the paper. At the end,
it turns out that the above picture is indeed correct, and the
pair (m∗,E ∗) satisfies the condition that E ∗ = the ground
state energy at mass m∗.
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Proof sketch contd.

I At this point, we have arrived at the following picture:

I A uniformly chosen function f with mass m and energy E
decomposes as the sum of a ‘macroscopic part’ f large and a
‘microscopic part’ f small.

I There is a pair (m∗,E∗) determined by (m,E ) such that with
high probability, f large has mass ≈ m∗ and energy ≈ E∗.

I E∗ is the ground state energy at mass m∗.

I In the continuous setting, this would suffice to conclude that
f large is close to a soliton (by stability of the ground state),
and therefore f itself is close to a soliton, since f ≈ f large in
the L∞ norm.

I Another chunk of the paper (roughly 10 pages) is devoted to
proving the stability of discrete solitons using a discretized
version of concentration compactness. The main challenge
here is to prove the strict super-additivity of the ground state
energy, which, unlike the continuous case, does not have an
explicit form.
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Proof sketch contd.

I Finally, one has to show the convergence of discrete solitons
to continuum solitons as the mesh size goes to zero.

I This takes the final 30 pages of the paper. Requires the
development of discrete analogs of harmonic analytic tools like
Littlewood-Paley decompositions, Hardy-Littlewood-Sobolev
inequality of fractional integration, Gagliardo-Nirenberg
inequality, discrete Green’s function estimates, etc., to prove
smoothness estimates for discrete solitons that do not blow up
as mesh size → 0.

I These smoothness estimates are used, in conjunction with the
stability of the continuum ground state soliton, to complete
the argument.
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