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Free probability theory =
Non-Commutative probability theory

+Notion of Freeness
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What is a non-commutative law ?

What is a classical law on Rd ?
It is a linear map

Q : f ∈ Cb(Rd ,R)→ Q(f ) =

∫
f (x)dQ(x) ∈ R

A non-commutative law τ of n self-adjoint variables is a linear map

τ : P ∈ C〈X1, · · · ,Xd〉 → τ(P) ∈ C

It should satisfy

• Positivity : τ(PP∗) ≥ 0 for all P, (zXi1 · · ·Xik )∗ = z̄Xik · · ·Xi1 ,

• Mass : τ(1) = 1,

• Traciality : τ(PQ) = τ(QP) for all P,Q.
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Free probability : non-commutative law+freeness

X = (X1, . . . ,Xm) and Y = (Y1, · · · ,Yn) are free under τ iff for all
polynomials P1 . . .P` and Q1, · · ·Q` so that τ(Pi (X)) = 0 and
τ(Qi (Y)) = 0

τ (P1(X)Q1(Y) · · ·P`(X)Q`(Y)) = 0.

• τ is uniquely determined by τ(P(X)) and τ(Q(Y)), Q,P
polynomials.

• Let G be a group with free generators g1, · · · , gm, neutral e

τ(g) = 1g=e , for g ∈ G

is the law of m free variables.
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Laws and representations as bounded linear operators

Let τ be a non-commutative law, that is a linear form on
C〈X1, . . . ,Xd〉 so that

τ(PP∗) ≥ 0, τ(1) = 1, τ(PQ) = τ(QP) ,

which is bounded, i.e. and for all ik ∈ {1, . . . , d}, all ` ∈ N,

|τ(Xi1 · · ·Xi`)| ≤ R` .

By the Gelfand-Naimark-Segal construction, we can associate to τ
a Hilbert space H, Ω ∈ H, and a1, . . . , ad bounded linear operators
on H so that for all P

τ(P(X1, . . . ,Xd)) = 〈Ω,P(a1, . . . , ad)Ω〉H .
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Examples of non-commutative laws :
τ linear, τ(PP∗) ≥ 0, τ(1) = 1, τ(PQ) = τ(QP)

• Let (XN
1 , · · · ,XN

d ) be d N × N Hermitian random matrices,

τXN (P) := E[
1

N
Tr
(
P(XN

1 , · · · ,XN
d )
)

]

Here Tr(A) =
∑N

i=1 Aii .

• Let (XN
1 , · · · ,XN

d ) be d N × N Hermitian random matrices
for N ≥ 0 so that

τ(P) := lim
N→∞

E[
1

N
Tr
(
P(XN

1 , · · · ,XN
d )
)

]

exists for all polynomial P.
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The Gaussian Unitary Ensemble

XN follows the GUE iff it is a N × N matrix so that

• (XN)∗ = XN ,

• (XN
k`)k≤` are independent,

• With gk`, g̃k` iid centered Gaussian variables with variance one

XN
k` =

1√
2N

(gk` + i g̃k`), k < `, XN
kk =

1√
N
gkk

In other words, the law of the GUE is given by

dP(XN) =
1

ZN
exp{−N

2
Tr((XN)2)}dXN

with dXN =
∏

k≤` d<XN
k`

∏
k<` d=XN

k`.
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The GUE and the semicircle law

Let XN be a matrix following the Gaussian Unitary Ensemble,
that is a

dP(XN) =
1

ZN
exp{−N

2
Tr((XN)2)}dXN

Theorem (Wigner 58’) With σ the semicircle distribution,

lim
N→∞

E[
1

N
Tr((XN)p)] =

∫
xpσ(dx) ∀p ∈ N

∫
xpdσ(x) is the number of non-crossing pair partitions of p

points.
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The law of free semicircle variables
Let XN

1 , · · · ,XN
d be independent GUE matrices, that is

P
(
dXN

1 , · · · , dXN
d

)
=

1

(ZN)d
exp{−N

2
Tr(

d∑
i=1

(XN
i )2)}

∏
dXN

i .

Theorem (Voiculescu 91’)

For any polynomial P ∈ C〈X1, · · · ,Xd〉

lim
N→∞

E[
1

N
Tr(P(XN

1 , · · · ,XN
d ))] = σ(P)

σ is the law of d free semicircle variables. If P = Xi1Xi2 · · ·Xik ,
σ(P) is the number of non-crossing color wise pair partitions build
over points of color i1, i2 . . .
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More general laws

Let V ∈ C〈X1, . . . ,Xd〉 and set

PN
V (dXN

1 , . . . , dX
N
d ) =

1

ZN
V

exp{−NTr(V (XN
1 , . . . ,X

N
d ))}dXN

1 · · · dXN
d

Theorem ( G–Maurel Segala 06’ and G–Shlyakhtenko 09’)

Assume that V satisfies a “local convexity property ” [e.g
V = 2−1

∑
X 2
i + W , W small]. Then there exists a

non-commutative law τV so that for any polynomial P

τV (P) = lim
N→∞

∫
1

N
Tr(P(XN

1 , . . . ,X
N
d ))dPN

V (XN
1 , . . . ,X

N
d )
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Example ; q-Gaussian variables [Bozejko and Speicher 91’]
A d-tuple of q-Gaussian variables is such that

τq,d(Xi1 · · ·Xip) =
∑
π

qi(π) ∀ik ∈ {1, · · · , d}

where the sum runs over pair partitions of colored dots whose
block contains dots of the same color and i(π) is the number of
crossings.

i(π) = 4

Theorem (Dabrowski 10’)

If dq small, there exists Vq,d = 1/2
∑

X 2
i + Wq,d with Wq,d small

so that

τq,d(P) = lim
N→∞

∫
1

N
Tr(P(XN

1 , . . . ,X
N
d ))dPN

Vq,d
(XN

1 , . . . ,X
N
d )
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The isomorphism problem

Let τ, µ be two non-commutative laws of d (resp. m) variables
X = (X1, . . . ,Xd) (resp. Y = (Y1, . . . ,Ym)).

Can we find “transport maps” T = (T1, . . . ,Tm) and
T ′ = (T ′1, . . . ,T

′
d) of d (resp. m) variables so that for all

polynomials P,Q

τ(P(X )) = µ(P(T1(Y ), . . . ,Td(Y )))

µ(Q(Y )) = τ(Q(T ′1(X ), . . . ,T ′m(X )))

We denote τ = T ]µ and µ = T ′]τ

The free group isomorphism problem : Does there exists transport
maps from τ to µ, the law of d (resp. m) free variables with
d 6= m ?
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Classical transport

Let P,Q be two probability measures on Rd and Rm respectively.
A transport map from P to Q is a measurable function
T : Rd → Rm so that for all bounded continuous function f

∫
f (T (x))dP(x) =

∫
f (x)dQ(x) .

We denote T#P = Q.
Q

T

P

Fact (von Neumann [1932]) : If P,Q � dx , T exists.
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Free transport (G. and Shlyakhtenko 12’)
Recall that

τW (P) = lim
N→∞

∫
1

N
Tr(P(XN

1 , . . . ,X
N
d ))dPN

V (XN
1 , . . . ,X

N
d )

with

V =
1

2

∑
X 2
i + W with W self-adjoint, small

Theorem
There exists FW ,TW smooth transport maps between τW , σ = τ0
so that for all polynomial P

τW = TW ]τ0 τ0 = FW ]τW

In particular the related C ∗ algebras and von Neumann algebras
are isomorphic.
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Isomorphisms of q-Gaussian algebras

Let τq,d be the law of d q Gaussian

τq,d(Xi1 · · ·Xip) =
∑
π

qi(π) ∀ik ∈ {1, · · · , d}

Theorem (G–Shlyakhtenko 12’)

For qd small enough, there exists smooth transport maps between
τq,d and τq,0 = σ. In particular the C∗-algebra and von Neumann
algebras of q-Gaussian laws, q small, are isomorphic to that of free
semicircle law σ.
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Idea of the proof : Monge-Ampère equation
Let P,Q be probability measures on Rd that have smooth densities

P(dx) = e−V (x)dx Q(dx) = e−W (x)dx .

Then T#P = Q is equivalent to∫
f (T (x))e−V (x)dx =

∫
f (x)e−W (x)dx

=

∫
f (T (y))e−W (T (y))JT (y)dy

with JT the Jacobian of T . Hence, it is equivalent to the
Monge-Ampère equation

V (x) = W (T (x))− log JT (x) .

There exists a free analogue to Monge-Ampère equation. For
W − V small it has a unique solution.
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Non-perturbative transport maps

PN
V (dXN

1 , . . . , dX
N
d ) =

1

ZN
e−NTr(V (XN

1 ,...,X
N
d ))
∏

dXN
i

τW (P) = lim
N→∞

∫
1

N
Tr(P(XN

1 , . . . ,X
N
d ))dPN

1
2

∑
X 2
i +W

(XN
1 , . . . ,X

N
d )

Theorem (WIP with Y-Dabrowski and D-Shlyakhtenko 14’)

Assume that “V = 1
2

∑
X 2
i + W is strictly convex”, then there

exists (Fi )1≤i≤d ∈ (C〈X1, . . . ,Xd〉)d so that

τW = F#τ0 .
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The Poisson approach
Transport µV (dx) = e−V (x)dx to µW (dx) = e−W (x)dx by
interpolation. Define a flow Ts,t so that Ts,t#µVs = µVt ,
Vt = (1− t)V + tW . Let

φt = lim
s→t

Ts,t = ∂tT0,t ◦ T−10,t (1)

If φt = ∇ψt , Monge-Ampère equation becomes

Ltψt = W − V (2)

with Lt = ∆−∇Vt .∇ infinitesimal generator.
Program : Solve Poisson equation (2) by

ψt = −
∫ ∞
0

esLt (W − V )ds

and then deduce T0,t solution of the transport equation (1) driven
by ∇ψt .

Generalizes by using free Stochastic differential equation.



Free probability Random matrices Transport maps Approximate transport and universality

The Poisson approach
Transport µV (dx) = e−V (x)dx to µW (dx) = e−W (x)dx by
interpolation. Define a flow Ts,t so that Ts,t#µVs = µVt ,
Vt = (1− t)V + tW . Let

φt = lim
s→t

Ts,t = ∂tT0,t ◦ T−10,t (1)

If φt = ∇ψt , Monge-Ampère equation becomes

Ltψt = W − V (2)

with Lt = ∆−∇Vt .∇ infinitesimal generator.
Program : Solve Poisson equation (2) by

ψt = −
∫ ∞
0

esLt (W − V )ds

and then deduce T0,t solution of the transport equation (1) driven
by ∇ψt . Generalizes by using free Stochastic differential equation.



Free probability Random matrices Transport maps Approximate transport and universality

Free probability and Random matrices

Free probability

Random matrices

Transport maps
The isomorphism problem
Proofs : Monge-Ampère equation

Approximate transport and universality



Free probability Random matrices Transport maps Approximate transport and universality

Local fluctuations in RMT

dPN
β,V (λ1, . . . , λN) =

1

ZN
β,V

1λ1<λ2<···<λN
∏
i<j

|λi−λj |βe−Nβ
∑
λ2i
∏

dλi

• For β = 1, 2, 4, Tracy and Widom (93)showed that for each
E ∈ [−2, 2], any compactly supported function f

lim
N→∞

EPN
β,V

[
∑

i1<···<ik

f (N(λi1 − E ), . . . ,N(λik − E ))] = ρkβ(f )

Tao showed (12) that N(λi − λi−1) converges towards the
Gaudin distribution. Moreover, Tracy -Widom (93) proved

lim
N→∞

EPN
β,V

[f (N2/3(λN − 2))] = TWβ(f ) .

• For β ≥ 0, this was extended by Ramirez,Rider, Virag at the
edge (06) and by Valko,Virag (07) at the edge.
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Universality for β-models

dPN
β,V (λ1, . . . , λN) =

1

ZN
β,V

∏
i<j

|λi − λj |βe−N
∑

V (λi )
∏

dλi .

Then lim
N→∞

1

N

∑
f (λi ) =

∫
f (x)dµV (x)

Theorem ( Bourgade, Erdös, Yau (1104.2272, 1306.5728))

Assume β ≥ 1, V C 4(R), µV with a connected support vanishing
as a square root at the boundary, the local fluctuations of the
eigenvalues are as in the case V = βx2.
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Approximate transport for β-models

dPN
β,V (λ1, . . . , λN) =

1

ZN
β,V

∏
i<j

|λi − λj |βe−N
∑

V (λi )
∏

dλi

Theorem (Bekerman–Figalli–G 2013)

β ≥ 0. Assume V ,W C 37(R), with equilibrium measures µV , µW
with connected support. Assume V ,W are off-critical. Then, there
exists T0 : R→ R C 19, T1 : RN → RN C 1 so that

‖(T⊗N0 +
T1

N
)#PN

β,V − PN
β,W ‖TV ≤ const.

√
logN

N
,

PN
β,V

(
sup

1≤k≤N
‖TN,k

1 ‖L1(PV
N )

+ sup
k,k ′

|TN,k
1 − TN,k ′

1 |√
N|λk − λk ′ |

≥ C logN

)
≤ N−c .

Hence, universality holds.
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Universality in several matrix models

dPV
N (XN

1 , . . . ,X
N
d ) =

1

ZN
V

e−
N
2
Tr(V (XN

1 ,...,X
N
d ))
∏
i

1‖XN
i ‖≤R

dXN
i

Theorem
Assume V = V ∗ = 1

2

∑
X 2
i +

∑
tiqi , ti small. The law of the

spacing Nc ij (λ
i
j − λij+1) of the eigenvalues of XN

i converges to the

Gaudin distribution, and that of N2/3ci (maxj λ
i
j − Ci ) to the

Tracy-Widom law.
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Universality for polynomial in several random matrices
[Figalli-G 14’]

Let P be a self-adjoint polynomial in d indeterminates and let
XN
1 , . . . ,X

N
d be d independent GUE or GOE matrices. Haagerup

and Thorbjornsen proved that the largest eigenvalue of
P(XN

1 , . . . ,X
N
d ) converges a.s to its free limit.

For ε small enough,
the eigenvalues of

Y N = XN
1 + εP(XN

1 , . . . ,X
N
d )

fluctuates locally as when ε = 0, that is the spacings follow Gaudin
distribution in the bulk and the Tracy-Widom law at the edge.
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Proof : Beta-models and Monge-Ampère

dPN
β,V (λ1, . . . , λN) =

1

ZN
β,V

∏
i<j

|λi − λj |βe−N
∑

V (λi )
∏

dλi

T#PN
β,V = PN

β,W satisfies the Monge-Ampère equation PN
β,V -a.s. :

β
∑
i<j

log
Ti (λ)− Tj(λ)

λi − λj
= N

∑
(V (Ti (λ))−W (λi )− log ∂Xi

Ti (λ)/N)

If V −W small, it can be solved by implicit function theorem.

Goal : Take Vt = tV + (1− t)W . Define T0,t#PN
β,V0

= PN
β,Vt

.

Then, φt = ∂tT0,t ◦ T−10,t satisfies

Mtφt = W − V

with

Mt f = β
∑
i<j

fi (λ)− fj(λ)

λi − λj
+
∑

∂Xi
fi − N

∑
V ′(λi )fi
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Ansatz and approximate transport
Take Vt = tV + (1− t)W . Aim : Build φt , ∂tT0,t ◦ (T0,t)

−1 = φt
so that

RN
t = Mtφt − (V −W )

goes to zero in L1(PV
N ).Then T0,t solution of ∂tT0,t = φt(T0,t) is

an approximate transport. Ansatz :

φit(λ) = φ0,t(λi ) +
1

N
φ1,t(λi ) +

1

N

∑
j

φ2,t(λi , λj) .

We find with MN =
∑

(δλi − µVt )

RN
t = N

∫
[Ξφ0,t + W − V ](x)dMN(x) + · · ·

with Ξf (x) = V ′t (x)f (x)− β
∫

f (x)− f (y)

x − y
dµVt (y),

Ξ is invertible. Choose φ0,t , φ1,t , φ2,t so that RN
t small.
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Approximate transport maps for several matrix-models

PN
Va

(dXN
1 , . . . , dX

N
d ) =

1

ZN
V

e−aNTr(V (XN
1 ,...,X

N
d ))
∏
i

e−NtrWi (Xi )dXN
i .

Then,the law of the eigenvalues PN
Va

of X 1
N , . . . ,X

d
N under PN

Va
is

PN
Va

(dλij) =
1

Z̃N
V

I aVN (λij)
d∏

i=1

∏
j<k

|λij − λik |βe
−N

∑
Wi (λ

i
j )dλij

I aVN (λij) =

∫
e−aNTr(V (UN

1 D(λ1)(UN
1 )∗,...,UN

d D(λ1)(UN
d )∗)dUN

1 · · · dUN
d

= (1 + O(
1

N
)) exp{(N2F a

2 + NF a
1 + F a

0 )(
1

N

∑
δλij
, 1 ≤ i ≤ d)}

by G-Novak 13’.
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Conclusion

• Ideas from classical analysis extend to operator algebra via
free probability/random matrices.

• These ideas are robust : they generalize to type III factors,
planar algebras etc[B. Nelson] The main questions are now
around smoothness of the transport maps and topology

• The main issue in several matrix models lies in the topological
expansion : being able to carry it out in non-pertubative
regimes would solve important questions in free probability
(convergence of entropy etc)
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