Norm inflation for incompressible Euler

Dong Li University of British Columbia

> Nov 21–23, 2014, TexAMP Symposium

> > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Outline

Intro

Folklore

Evidence

Results

Proof

< □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > 三 の Q (C 2/45

Incompressible Euler

$$\left\{ egin{aligned} &\partial_t u + (u \cdot
abla) u +
abla p = 0, \quad (t,x) \in \mathbb{R} imes \mathbb{R}^d, \ &\nabla \cdot u = 0, \ &u ig|_{t=0} = u_0, \end{aligned}
ight.$$

where dimension $d \ge 2$,

- velocity: $u(t,x) = (u_1(t,x), \cdots, u_d(t,x));$
- pressure: $p(t, x) : \mathbb{R} \times \mathbb{R}^d \to \mathbb{R}$
- Well-known: LWP in $H^s(\mathbb{R}^d)$, $s > s_c := 1 + d/2$
- (Old) Folklore problem: $s = s_c$?

The appearance of critical index $s_c = 1 + d/2$

Typical energy estimate (+usual regularization/mollification arguments):

$$\frac{d}{dt}\left(\|u(t,\cdot)\|_{H^{\mathfrak{s}}_{x}(\mathbb{R}^{d})}^{2}\right) \leq C_{\mathfrak{s},\mathfrak{d}}\|Du(t,\cdot)\|_{L^{\infty}_{x}(\mathbb{R}^{d})}\cdot\|u(t,\cdot)\|_{H^{\mathfrak{s}}_{x}(\mathbb{R}^{d})}^{2}$$

To close the H^s estimate, need

$$\|Du\|_{L^{\infty}_{x}} \leq const \cdot \|u\|_{H^{s}_{x}}.$$

Thus

$$s > 1 + d/2 =: s_c$$

4/45

A doomed attempt

What about closing estimates in $||u||_X = ||u||_{H^s} + ||Du||_{\infty}$ and still hope $s \leq s_c$? Equation for Du (after eliminating pressure), roughly

$$\partial_t (Du) + \underbrace{(u \cdot \nabla)(Du)}_{OK} + \underbrace{(Du \cdot \nabla)u}_{OK} + \underbrace{R_{ij}(Du \otimes Du)}_{\text{came from pressure}} = 0.$$

Due to Riesz transform R_{ij} ,

$$egin{aligned} \| R_{ij}(Du\otimes Du) \|_{\infty} \lesssim \| (Du)(Du) \|_{H^{rac{d}{2}+\epsilon}} \ &\lesssim \| u \|_{H^{rac{d}{2}+1+\epsilon}}. \end{aligned}$$

Again need

$$s > s_c (= d/2 + 1)$$

Issues with criticality

- $s > s_c$ can also be seen through vorticity formulation
- Similar questions arise in other function spaces
- An extensive literature on wellposedness results in "non-critical" spaces

Outline

Intro

Folklore

Evidence

Results

Proof

< □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > 三 の Q @ 7/45

Classical results: partial list

- Lichtenstein, Gunther (LWP in $C^{k,\alpha}$)
- Wolibner (GWP of 2D Euler in Hölder), Chemin
- ► Ebin-Marsden (LWP of Euler in H^{d/2+1+ϵ} on general compact manifolds, C[∞]-boundary allowed)

8 / 45

• Bouruignon-Brezis $W^{s,p}$ (s > d/p + 1).

Wellposedness results: Sobolev

- Kato 75': LWP in $C_t^0 H_x^m(\mathbb{R}^d)$, integer m > d/2 + 1.
- ▶ Kato-Ponce 88': LWP in $W^{s,p}(\mathbb{R}^d)$, real s > d/p + 1, 1
- Kato-Ponce commutator estimate: J^s = (1 − Δ)^{s/2}, s ≥ 0, 1

 $\|J^{s}(fg) - fJ^{s}g\|_{p} \lesssim_{d,s,p} \|Df\|_{\infty} \|J^{s-1}g\|_{p} + \|J^{s}f\|_{p} \|g\|_{\infty},$

Wellposedness results: Sobolev

In Sobolev spaces $W^{s,p}(\mathbb{R}^d)$, you need

s>d/p+1

Not surprisingly, it came from

 $\|Du\|_{\infty} \leq const \|u\|_{W^{d/p+1+\epsilon,p}}$

・ロト ・屈 ト ・ 三 ト ・ 三 ・ つくの

10/45

Wellposedness results: Besov

- ▶ Vishik '98: GWP of 2D Euler in $B_{p,1}^{2/p+1}(\mathbb{R}^2)$, 1 .
- ▶ Chae '04: LWP in $B_{p,1}^{d/p+1}(\mathbb{R}^d)$, 1 .
- Pak-Park '04: LWP in $B^1_{\infty,1}(\mathbb{R}^d)$.

The key idea of Besov refinements:

you can push regularity down to critical s = d/p + 1, but you pay summability! Example:

$$H^1(\mathbb{R}^2) = B^1_{2,2}(\mathbb{R}^2) \nleftrightarrow L^\infty(\mathbb{R}^2)$$

But

$$B^1_{2,1}(\mathbb{R}^2) \hookrightarrow L^\infty(\mathbb{R}^2)$$

 ► If you insist on having critical regularity s_c = d/p + 1, then you need

$B^{s_c}_{p,q}$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ = 臣 = の

12/45

with q = 1! (to accommodate L^{∞} embedding)

▶ NO wellposedness results were known for $1 < q \leq \infty$.

A common theme

Find a Banach space X such that (e.g. $f = \nabla \times u$, $X = B_{p,1}^{d/p}$)

 $||f||_{\infty} + ||R_{ij}f||_{\infty} \lesssim ||f||_{X}$

some version of Kato-Ponce commutator estimate holds in X.

The inevitable

- ▶ Completely breaks down for critical (say) $H^{\frac{d}{2}+1}(\mathbb{R}^d)$ spaces.
- Two fantasies:
 - super-good commutator estimates?
 - divergence-free may save the day?
- ► NO!
- ▶ Takada '10: **divergence-free** counterexamples of Kato-Ponce-type commutator estimates in critical $B_{p,q}^{d/p+1}(\mathbb{R}^d)$ $(1 \le p \le \infty, 1 < q \le \infty)$ and $F_{p,q}^{d/p+1}(\mathbb{R}^d)$ (1 space.

The slightest clue

Consider 2D Euler in vorticity form: $\omega = -\partial_{x_2}u_1 + \partial_{x_1}u_2$,

$$\partial_t \omega + \nabla^\perp \Delta^{-1} \omega \cdot \nabla \omega = 0.$$

Critical space: $H^2(\mathbb{R}^2)$ for u.

$$\frac{1}{2}\frac{d}{dt}\|\partial_{x_1}\omega\|_2^2 = -\underbrace{\int_{\mathbb{R}^2} (\partial_1 \nabla^{\perp} \Delta^{-1}\omega \cdot \nabla \omega) \partial_1 \omega dx}_{\text{Can be made very large when } \omega \in H^1 \text{ only}}$$

Not difficult to show: no $C_t^1 H^2$ wellposedness (for velocity u). But this does not rule out $C_t^0 H^2$, $L_t^{\infty} H^2$, and so on!

Folklore problem

Conjecture: The Euler equation is "illposed" for a class of initial data in $H^{d/2+1}(\mathbb{R}^d)$

- Rem: analogous versions in W^{d/p+1,p}, Besov, Triebel-Lizorkin...
- Part of the difficulty: How even to formulate it?
- Infinitely worse: How to approach it?
- Need a deep understanding of how critical space typology changes under the Euler dynamics

Outline

Intro

Folklore

Evidence

Results

Proof

< □ > < □ > < ≧ > < ≧ > < ≧ > ≧ > ○ Q (C 17/45

Explicit solutions

Two and a half dimensional shear flow (DiPerna-Majda '87):

$$u(t,x) = (f(x_2), 0, g(x_1 - tf(x_2))), \quad x = (x_1, x_2, x_3),$$

f and g are given 1D functions.

- Solves 3D Euler with pressure p = 0
- ▶ DiPerna-Lions: $\forall 1 \le p < \infty$, T > 0, M > 0, exist

$$\|u(0)\|_{W^{1,p}(\mathbb{T}^3)} = 1, \ \|u(T)\|_{W^{1,p}(\mathbb{T}^3)} > M$$

- ▶ Bardos-Titi '10: $u(0) \in C^{\alpha}$, but $u(t) \notin C^{\beta}$ for any t > 0, $1 > \beta > \alpha^2$ (illposedness in $F^1_{\infty,2}$ and $B^1_{\infty,\infty}$).
- Misiołek and Yoneda: illposedness in LL_{α} , $0 < \alpha \leq 1$:

$$\|f\|_{\mathsf{LL}_{lpha}} = \|f\|_{\infty} + \sup_{0 < |x-y| < \frac{1}{2}} \frac{|f(x) - f(y)|}{|x-y||\log |x-y||^{lpha}} < \infty.$$

Understanding the solution operator

- ► Kato '75: the solution operator for the Burgers equation is not Hölder continuous in H^s(ℝ), s ≥ 2 norm for any prescribed Hölder exponent.
- Himonas and Misiołek '10: the data-to-solution map of Euler is not uniformly continuous in H^s topology
- Inci '13: nowhere locally uniformly continuous in H^s(ℝ^d), s > d/2 + 1.
- Cheskidov-Shvydkoy '10: illposedness of Euler in B^s_{r,∞}(T^d), s > 0 if r > 2; s > d(2/r − 1) if 1 ≤ r ≤ 2.
- ▶ Yudovich (Hölder $\leq e^{-Ct}$), Bahouri-Chemin '94 (not Hölder $\leq e^{-t}$), Kelliher '10 (no Hölder)

No bearing on the critical case!

Outline

Intro

Folklore

Evidence

Results

Proof

< □ > < □ > < □ > < ⊇ > < ⊇ > < ⊇ > < ⊇ > < ⊇ < 20 / 45

Roughly speaking, the results are as follows:

Theorem[Bourgain-L '13]. Let the dimension d = 2, 3. The Euler equation is **indeed illposed** in the Sobolev space $W^{d/p+1,p}$ for any $1 or the Besov space <math>B_{p,q}^{d/p+1}$ for any $1 , <math>1 < q \le \infty$.

Situation worse/better than we thought

 ▶ Usual scenario (you would think): Initially ||u(0)||_X ≪ 1 Later ||u(T)||_X ≫ 1
 ▶ Here: ||u(0)||_X ≪ 1, but

$$\operatorname{ess-sup}_{0 < t < T} \| u(t) \|_X = +\infty$$

▶ Rem: kills even $L_t^{\infty} X$!

"Generic" Illposedness

"Strongly illposed": any smooth u₀, once can find a nearby v₀, s.t.

$$\|v_0-u_0\|_X<\epsilon,$$

but

$$\mathrm{ess-sup}_{0 < t < t_0} \| v(t) \|_X = +\infty, \quad \forall t_0 > 0.$$

Illposedness (Norm inflation) is dense in critical X-topology!

Vorticity formulation

To state more precisely the main results, recall: 2D Euler: $\omega = \nabla^{\perp} \cdot u$:

$$\begin{cases} \partial_t \omega + (\Delta^{-1} \nabla^{\perp} \omega \cdot \nabla) \omega = 0, \\ \omega \Big|_{t=0} = \omega_0. \end{cases}$$

3D Euler: $\omega = \nabla \times u$,

$$\begin{cases} \partial_t \omega + (u \cdot \nabla) \omega = (\omega \cdot \nabla) u, \\ u = -\Delta^{-1} \nabla \times \omega, \\ \omega \Big|_{t=0} = \omega_0. \end{cases}$$

Coming up: 2D Euler

- TWO cases for 2D Euler:
 - a Initial vorticity $\boldsymbol{\omega}$ is not compactly-supported
 - b Compactly supported case
- 3D Euler a lot more involved (comments later)

2D Euler non-compact data

Theorem 1: For any given $\omega_0^{(g)} \in C_c^{\infty}(\mathbb{R}^2) \cap \dot{H}^{-1}(\mathbb{R}^2)$ and any $\epsilon > 0$, there exist C^{∞} perturbation $\omega_0^{(p)} : \mathbb{R}^2 \to \mathbb{R}$ s.t.

- 1. $\|\omega_0^{(p)}\|_{\dot{H}^1(\mathbb{R}^2)} + \|\omega_0^{(p)}\|_{L^1(\mathbb{R}^2)} + \|\omega_0^{(p)}\|_{L^{\infty}(\mathbb{R}^2)} + \|\omega_0^{(p)}\|_{\dot{H}^{-1}(\mathbb{R}^2)} < \epsilon.$
- 2. Let $\omega_0 = \omega_0^{(g)} + \omega_0^{(p)}$. The initial velocity $u_0 = \Delta^{-1} \nabla^{\perp} \omega_0$ has regularity $u_0 \in H^2(\mathbb{R}^2) \cap C^{\infty}(\mathbb{R}^2) \cap L^{\infty}(\mathbb{R}^2)$.
- 3. There exists a unique classical solution $\omega = \omega(t)$ to the 2D Euler equation (in vorticity form) satisfying

$$\max_{0\leq t\leq 1}\Big(\|\omega(t,\cdot)\|_{L^1}+\|\omega(t,\cdot)\|_{L^\infty}+\|\omega(t,\cdot)\|_{\dot{H}^{-1}}\Big)<\infty.$$

Here $\omega(t) \in C^{\infty}$, $u(t) = \Delta^{-1} \nabla^{\perp} \omega(t) \in C^{\infty} \cap L^2 \cap L^{\infty}$ for each $0 \leq t \leq 1$.

4. For any $0 < t_0 \leq 1$, we have

$$\mathrm{ess-sup}_{0 < t \le t_0} \| \nabla \omega(t, \cdot) \|_{L^2(\mathbb{R}^2)} = +\infty.$$

26 / 45

Comments

- ► The H⁻¹ assumption on the vorticity data ω₀^(g) is actually not needed
- ▶ In our construction, although the initial velocity u_0 is $C^{\infty} \cap L^{\infty}$, $\|\nabla u_0\|_{L^{\infty}(\mathbb{R}^2)} = +\infty$.
- ► Classical C[∞]-solutions! (No need to appeal to Yudovich theory)
- ► Kato '75 introduced the uniformly local Sobolev spaces L^p_{ul}(ℝ^d), H^s_{ul}(ℝ^d) which contain H^s(ℝ^d) and the periodic space H^s(ℝ^d). We can refine the result to

$$ext{ess-sup}_{0 < t \leq t_0} \|
abla \omega(t, \cdot) \|_{L^2_{ul}(\mathbb{R}^2)} = +\infty.$$

2D compactly supported case

- Next result: the compactly supported data for the 2D Euler equation.
- Carries over (with simple changes) to the periodic case as well
- For simplicity consider vorticity functions having one-fold symmetry: g is odd in x₁

$$g(-x_1, x_2) = -g(x_1, x_2), \quad \forall x = (x_1, x_2) \in \mathbb{R}^2.$$

Preserved by the Euler flow

2D Euler compact data

Theorem 2: Let $\omega_0^{(g)} \in C_c^{\infty}(\mathbb{R}^2) \cap \dot{H}^{-1}(\mathbb{R}^2)$ be any given vorticity function which is odd in x_2 . For any any $\epsilon > 0$, we can find a perturbation $\omega_0^{(p)} : \mathbb{R}^2 \to \mathbb{R}$ s.t.

1. $\omega_0^{(p)}$ is compactly supported (in a ball of radius \leq 1), continuous and

$$\|\omega_0^{(p)}\|_{\dot{H}^1(\mathbb{R}^2)} + \|\omega_0^{(p)}\|_{L^{\infty}(\mathbb{R}^2)} + \|\omega_0^{(p)}\|_{\dot{H}^{-1}(\mathbb{R}^2)} < \epsilon.$$

- 2. Let $\omega_0 = \omega_0^{(g)} + \omega_0^{(p)}$. Corresponding to ω_0 there exists a unique time-global solution $\omega = \omega(t)$ to the Euler equation satisfying $\omega(t) \in L^{\infty} \cap \dot{H}^{-1}$. Furthermore $\omega \in C_t^0 C_x^0$ and $u = \Delta^{-1} \nabla^{\perp} \omega \in C_t^0 L_x^2 \cap C_t^0 C_x^\alpha$ for any $0 < \alpha < 1$.
- 3. $\omega(t)$ has additional local regularity in the following sense: there exists $x_* \in \mathbb{R}^2$ such that for any $x \neq x_*$, there exists a neighborhood $N_x \ni x$, $t_x > 0$ such that $\omega(t, \cdot) \in C^{\infty}(N_x)$ for any $0 \le t \le t_x$.

Conti.

For any $0 < t_0 \leq 1$, we have

$$\mathrm{ess}\operatorname{-sup}_{0 < t \leq t_0} \|\omega(t, \cdot)\|_{\dot{H}^1} = +\infty.$$

More precisely, there exist $0 < t_n^1 < t_n^2 < \frac{1}{n}$, open precompact sets Ω_n , $n = 1, 2, 3, \cdots$ such that $\omega(t) \in C^{\infty}(\Omega_n)$ for all $0 \le t \le t_n^2$, and

$$\|\nabla \omega(t,\cdot)\|_{L^2(\Omega_n)} > n, \quad \forall t \in [t_n^1, t_n^2].$$

・ロン ・四 と ・ ヨ と ・ ヨ と … ヨ

30 / 45

Comments: uniqueness

- ► Yudovich '63: existence and uniqueness of weak solutions to 2D Euler in bounded domains for L[∞] vorticity data.
- Yudovich '95: improved uniqueness result (for bounded domain in general dimensions d ≥ 2) allowing vorticty ω ∈ ∩_{p0≤p<∞}L^p and ||ω||_p ≤ Cθ(p) with θ(p) growing relatively slowly in p (such as θ(p) = log p).
- ► Vishik '99 uniqueness of weak solutions to Euler in ℝ^d, d ≥ 2, under the following assumptions:
 - ▶ $\omega \in L^{p_0}$, $1 < p_0 < d$,
 - ▶ For some *a*(*k*) > 0 with the property

$$\int_1^\infty \frac{1}{a(k)} dk = +\infty,$$

it holds that

$$\left|\sum_{j=2}^{k} \|P_{2^{j}}\omega\|_{\infty}\right| \leq \operatorname{const} \cdot a(k), \quad \forall k \geq 4.$$

► Uniqueness OK in our construction: uniform in time L^{∞} control of the vorticity ω Without going into any computation, you realize:

- One of difficulty in 3D: lifespan of smooth initial data
- Technical issues: make judicious perturbation in H^{5/2} while controlling the lifespan!
- Vorticity stretching

Comments (contin...)

- Critical norm $\dot{H}^{\frac{3}{2}}$ for vorticity ($H^{\frac{5}{2}}$ for velocity).
- ► A technical nuissance: nonlocal fractional differentiation operator |∇|³/₂
- ► Theorem 1-Theorem 4 can be sharpened significantly: e.g. ||u₀ - u₀^(g)||_{B^{d/p+1}_{p,q} < ε,</p>}

$$\operatorname{ess-sup}_{0 < t < t_0} \|u(t, \cdot)\|_{\dot{B}^{d/p+1}_{p,\infty}} = +\infty$$

for any $t_0 > 0$.

► Similarly: Sobolev W^{d/p+1,p}, Triebel-Lizorkin etc.

Outline

Intro

Folklore

Evidence

Results

Proof

<ロト < 回 > < 目 > < 目 > < 目 > 目 の Q (C 34 / 45 Consider 2D Euler in vorticity formulation:

$$\partial_t \omega + \Delta^{-1} \nabla^\perp \omega \cdot \nabla \omega = 0.$$

Critical space: $\dot{H}^1(\mathbb{R}^2)$ for ω (H^2 for velocity u)

Step 1: Creation of large Lagrangian deformation

Flow map
$$\phi = \phi(t, x)$$

$$\begin{cases} \partial_t \phi(t, x) = u(t, \phi(t, x)), \\ \phi(0, x) = x. \end{cases}$$

For any 0 < T ≪ 1, B(x₀, δ) ⊂ ℝ² and δ ≪ 1, choose initial (vorticity) data ω⁽⁰⁾_a such that

$$\|\omega_{a}^{(0)}\|_{L^{1}} + \|\omega_{a}^{(0)}\|_{L^{\infty}} + \|\omega_{a}^{(0)}\|_{H^{1}} \ll 1,$$

and

$$\sup_{0 < t \le T} \| D\phi_{\mathbf{a}}(t, \cdot) \|_{\infty} \gg 1.$$

 ϕ_a is the flow map associated with the velocity $u = u_a$.

- ► Judiciously choose ω_a⁽⁰⁾ as a chain of bubbles concentrated near origin (respect H¹ assumption!)
- ► Deformation matrix *Du* remains essentially hyperbolic

36 / 45

Step 2: Local inflation of critical norm.

- The solution constructed in Step 1 does not necessarily obey sup_{0<t≤T} ||∇ω_a(t)||₂ ≫ 1.
- Perturb the initial data $\omega_a^{(0)}$ and take

$$\omega_b^{(0)} = \omega_a^{(0)} + \frac{1}{k}\sin(kf(x))g(x),$$

where k is a very large parameter.

- $\|g\|_2 \sim o(1)$, f captures $\|D\phi_a(t,\cdot)\|_{\infty}$.
- ► A perturbation argument in W^{1,4} to fix the change in flow map
- As a result, in the main order the H¹ norm of the solution corresponding to ω_b⁽⁰⁾ is inflated through the Lagrangian deformation matrix Dφ_a.
- Rem: Nash twist, Onsager (De Lellis-Szekelyhidi)

・ロン ・雪 とく 思 とく 日 と

Step 3: Gluing of patch solutions

- Repeat the local construction in infinitely many small patches which stay away from each other initially.
- To glue these solutions: consider two cases.

Noncompact case...

- Case 3a: noncompact data
- Add each patches sequentially and choose their mutual distance ever larger!
 - $\underline{\mathsf{REM}}$: this is the analogue of weakly interacting particles in Stat Mech.

イロト 不得下 イヨト イヨト 二日

39/45

- Key properties exploited here:
 - finite transport speed of the Euler flow;
 - spatial decay of the Riesz kernel.

Living on different scales...

- Case 3b: compact data
- Patches inevitably get close to each other!
- Need to take care of fine interactions between patches (Strongly interacting case!)

3b (contin...): a very involved analysis

- For each n ≥ 2, define ω_{≤n−1} the existing patch and ω_n the current (to be added) patch
- There exists a patch time T_n s.t. for 0 ≤ t ≤ T_n, the patch ω_n has disjoint support from ω_{≤n−1}, and obeys the dynamics

$$\partial_t \omega_n + \Delta^{-1} \nabla^{\perp} \omega_{\leq n-1} \cdot \nabla \omega_n + \Delta^{-1} \nabla^{\perp} \omega_n \cdot \nabla \omega_n = 0.$$

▶ By a re-definition of the patch center and change of variable, $\tilde{\omega}_n$ satisfies

$$\partial_t \tilde{\omega}_n + \Delta^{-1} \nabla^\perp \tilde{\omega}_n \cdot \nabla \tilde{\omega}_n + b(t) \begin{pmatrix} -y_1 \\ y_2 \end{pmatrix} \cdot \nabla \tilde{\omega}_n + r(t, y) \cdot \nabla \tilde{\omega}_n = 0,$$

where b(t) = O(1) and $|r(t,y)| \lesssim |y|^2$.

Re-do a new inflation argument!

3b (conti...)

- Choose initial data for ω_n such that within patch time 0 < t ≤ T_n the critical norm of ω_n inflates rapidly.
- ▶ As we take $n \to \infty$, the patch time $T_n \to 0$ and ω_n becomes more and more localized
- the whole solution is actually time-global.
- During interaction time *T_n* (Smoothness in limited patch time!) the patch ω_n produces the desired norm inflation since it stays well disjoint from all the other patches.

Difficulties in 3D: a snapshot

- ▶ First difficulty in 3D: lack of L^p conservation of the vorticity.
- Deeply connected with the vorticity stretching term $(\omega \cdot
 abla) u$
- To simplify the analysis, consider the axisymmetric flow without swirl

$$\partial_t \left(\frac{\omega}{r}\right) + (u \cdot \nabla) \left(\frac{\omega}{r}\right) = 0, \quad r = \sqrt{x_1^2 + x_2^2}, x = (x_1, x_2, z).$$

- Owing to the denominator r, the solution formula for ω then acquires an additional metric factor (compared with 2D) which represents the vorticity stretching effect in the axisymmetric setting.
- Difficulty: control the metric factor and still produce large Lagrangian deformation.

Difficulties in 3D (conti..)

- The best local theory still requires $\omega/r \in L^{3,1}(\mathbb{R}^3)$
- ► The dilemma: need infinite $\|\omega/r\|_{L^{3,1}}$ norm to produce inflation.
- ▶ A new perturbation argument: add each new patch ω_n with sufficiently small $\|\omega_n\|_{\infty}$ norm (over the whole lifespan) such that the effect of the large $\|\omega_n/r\|_{L^{3,1}}$ becomes negligible.
- ▶ The spin-off: local solution with infinite $||\omega/r||_{L^{3,1}}$ norm!
- More technical issues...

In summary

- Our new strategy: Large Lagrangian deformation induces critical norm inflation
- Exploited both Lagrangian and Eulerian point of view
- A multi-scale construction!
- ▶ In stark contrast: H^1 -critical NLS in \mathbb{R}^3 :

$$i\partial_t u + \Delta u = |u|^4 u$$

is wellposed for $u_0 \in \dot{H}^1(\mathbb{R}^3)$

- Flurry of more recent developments
 - Proof of endpoint Kato-Ponce (conjectured by Grafakos-Maldonado-Naibo)
 - C^m case: anisotropic Lagrangian deformation, flow decoupling Misolek-Yoneda, Masmoudi-Elgindi, · · · ...