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Incompressible Euler

O+ (u-Vu+Vp=0, (t,x)€RxRY,
V.-u=0,
u‘t:O = Uo,
where dimension d > 2,
» velocity: u(t,x) = (u1(t,x), -, uq(t,x));
> pressure: p(t,x):R xRY — R

» Well-known: LWP in H5(R9), s > s. := 1+ d/2
» (Old) Folklore problem: s = s.7
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The appearance of critical index s, =1+ d/2

Typical energy estimate (++usual regularization/mollification
arguments):

1t M) < Coall D, iz qany 18, ) B
To close the H® estimate, need
| Dul| e < const - ||ul|ys.
Thus

s>1+4d/2=:s.



A doomed attempt

What about closing estimates in ||u||x = ||ul|ns + ||Dul|s and still
hope s < 5.7
Equation for Du (after eliminating pressure), roughly

O0¢(Du) + (u - V)(Du)+ (Du - V)u+ Rjj(Du® Du) = 0.

OK OK came from pressure

Due to Riesz transform Rj;,

IRj(Du ® Du)|leo < [|(Du)(Dull, g

S Il

+e€
H%+l+e N

Again need

s>s(=d/2+1)

5/45



Issues with criticality

> 5 > s can also be seen through vorticity formulation
» Similar questions arise in other function spaces

» An extensive literature on wellposedness results in
"non-critical” spaces
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Classical results: partial list

» Lichtenstein, Gunther (LWP in Ck)
» Wolibner (GWP of 2D Euler in Holder), Chemin

» Ebin-Marsden (LWP of Euler in H9/2t1+¢ on general compact
manifolds, C*>°-boundary allowed)

» Bouruignon-Brezis W*P (s > d/p + 1).
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Wellposedness results: Sobolev

» Kato 75": LWP in CPHM(R?), integer m > d/2 + 1.
» Kato-Ponce 88": LWP in W5P(RY), real s > d/p + 1,
l<p<o

» Kato-Ponce commutator estimate: J* = (1 — A)s/z, s> 0,
1< p<oo:

1°(fg) — £°glp Sasp | DF sl gllp + 11l pllg oo

45



Wellposedness results: Sobolev

In Sobolev spaces W*P(R9), you need
s>d/p+1
Not surprisingly, it came from

H DUHOO S CO”StH UH Wd/p+1+e,p
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Wellposedness results: Besov

> Vishik '98: GWP of 2D Euler in B2 (R?), 1 < p < <.
> Chae '04: LWP in BYPTH(RY), 1 < p < cc.
» Pak-Park '04: LWP in B;O7I(Rd).

The key idea of Besov refinements:
you can push regularity down to critical s = d/p + 1, but you pay
summability! Example:

HY(R?) = B} ,(R?) - L°(R?)
But

B 1(R?) — L(R?)

11/45



The Besov /'-cheat

» If you insist on having critical regularity s. = d/p + 1, then
you need

Sc
prq

with g =1!(to accommodate L>° embedding)

» NO wellposedness results were known for 1 < g < cc.
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A common theme

Find a Banach space X such that (e.g. f =V xu, X = Bg/lp)
> [flloo + IR flloo < 111X
» some version of Kato-Ponce commutator estimate holds in X.
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The inevitable

» Completely breaks down for critical (say) HgH(Rd) spaces.
» Two fantasies:

» super-good commutator estimates?
> divergence-free may save the day?

» NO!

» Takada '10: divergence-free counterexamples of
Kato-Ponce-type commutator estimates in critical
BIPTH(RY) (1< p < o00,1<q< o0)and FyPT(RY)
(l<p<oo,<g<ooorp=g=0o0) space.
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The slightest clue

Consider 2D Euler in vorticity form: w = —0x,u1 + Oy, U2,
Orw + ViAW Vw = 0.

Critical space: H?(IR?) for u.

1d
19wl = - / (T AL V)
2 dt R2

Can be made very large when w € H! only

Not difficult to show: no C}H? wellposedness (for velocity u).

But this does not rule out CYH?, L3°H?, and so on!
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Folklore problem

Conjecture: The Euler equation is "illposed” for a class of
initial data in H/2+1(R9)

» Rem: analogous versions in W9/Pt1.P Besov,
Triebel-Lizorkin...

» Part of the difficulty: How even to formulate it?
» Infinitely worse: How to approach it?

» Need a deep understanding of how critical space typology
changes under the Euler dynamics
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Explicit solutions

Two and a half dimensional shear flow (DiPerna-Majda '87):
u(t,x) = (f(x2), 0,80 — tF(x2))),  x = (x1,%2,x3),

f and g are given 1D functions.
» Solves 3D Euler with pressure p =0
» DiPerna-Lions: V1 < p<oo, T >0, M >0, exist

[u(O)wreersy = 1, [[u(T)llwro(rsy > M
» Bardos-Titi '10: u(0) € C?, but u(t) ¢ CP for any t > 0,

1> 3> a? (illposedness in F§o72 and BY, ).
» Misiotek and Yoneda: illposedness in LL,, 0 < a < 1:
[f(x) = f(y)|

1fllie, = Ifllo +  sup | — < o0
0cpeyl<d X = Il log|x = y]|
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Understanding the solution operator

» Kato '75: the solution operator for the Burgers equation is
not Holder continuous in H*(R), s > 2 norm for any
prescribed Holder exponent.

» Himonas and Misiotek '10: the data-to-solution map of Euler
is not uniformly continuous in H*® topology

> Inci '13: nowhere locally uniformly continuous in H*(RY),
s>d/2+1.

» Cheskidov-Shvydkoy '10: illposedness of Euler in Bioo(']l‘d),
s>0ifr>2,s>d2/r—1)if1<r<2.

> Yudovich (Holder < e~¢*), Bahouri-Chemin '94 (not Holder
< e 1), Kelliher '10 (no Hélder)

No bearing on the critical case!
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Strong illposedness of Euler

Roughly speaking, the results are as follows:

Theorem[Bourgain-L '13]. Let the dimension d = 2,3. The Euler
equation is indeed illposed in the Sobolev space W9/PTLP for any
1 < p < oo or the Besov space B,%’J”Ll forany 1 < p < o0,

1< qg< .
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Situation worse/better than we thought

» Usual scenario (you would think):

Initially [|u(0)||x < 1
Later |lu(T)||x >1

» Here: ||u(0)||x < 1, but

€SS-SUPgct<T Ju(t)lx = +o0

» Rem: kills even L°X!
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" Generic" lllposedness

» "Strongly illposed”: any smooth ug, once can find a nearby
Vo, S.t.

”Vo — UOHX < €,
but
€sS-SUPg < ¢<¢, || V()| x = +00, Vitg > 0.

» lllposedness (Norm inflation) is dense in critical X-topology!
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Vorticity formulation

To state more precisely the main results, recall:
2D Euler: w = V+ - u:
Ow + (A7IVLw - V)w = 0,

w = wo-
t=0

3D Euler: w =V x u,
Ow~+ (u-V)w = (w-V)u,
u=—-A"1V x w,

w = wy-
t=0
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Coming up: 2D Euler

» TWO cases for 2D Euler:

a Initial vorticity w is not compactly-supported
b Compactly supported case

» 3D Euler a lot more involved (comments later)
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2D Euler non-compact data
Theorem 1: For any given w(()g) € C*(R?) N H~'(R?) and any
€ > 0, there exist C*° perturbation w(()p) :R? - R s.t.

1.
2.

o1 gy + 1o 2 ey 1o oo ey + 108 2 ) < €
Let wg = w(()g) + w(()p). The initial velocity ug = A~1V+wq has
regularity up € H?(R?) N C=(R?) N L(R?).

There exists a unique classical solution w = w(t) to the 2D
Euler equation (in vorticity form) satisfying

max (Jle(t, Yoo + (e, Ve + (e, Y1) < oo

Here w(t) € C*®, u(t) = A™1V+w(t) € C® N L2 N L™ for
each 0 <t <1.
For any 0 < tg < 1, we have

ess-SUPo< e<ry | Vw(t, )| 12(r2) = +00.

26
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Comments

» The H1 assumption on the vorticity data w(()g) is actually not

needed

» In our construction, although the initial velocity ug is
C® N Lo, ||VU0||L00(R2) = +00.

» Classical C*-solutions! (No need to appeal to Yudovich
theory)

» Kato '75 introduced the uniformly local Sobolev spaces
LP(RY), HS,(R?) which contain HS(RY) and the periodic
space H5(T9). We can refine the result to

€S5-SUPg <<ty [Vw(t, ')”Lﬁ,(R?) = +00.
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2D compactly supported case

» Next result: the compactly supported data for the 2D Euler
equation.

» Carries over (with simple changes) to the periodic case as well

» For simplicity consider vorticity functions having one-fold
symmetry: g is odd in x1

g(—x1,x) = —g(x1,x2), Vx=(x1,x) € R2.

» Preserved by the Euler flow
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2D Euler compact data
Theorem 2: Let w( &) ¢ C2°(R?) N H~(R?) be any given vorticity
function which is odd in x. For any any € > 0, we can find a
perturbation w(()p) ‘R? > R s.t.

1. wép) is compactly supported (in a ball of radius < 1),

continuous and
ool rzy + 10§l w2y + N0 g2 gy < e

2. Let wg = w(g) + w(() P) Corresponding to wg there exists a
unique time-global solution w = w(t) to the Euler equation
satisfying w(t) € LN H~1. Furthermore w € COC? and
u=A1V1tw e CcoL2n COC)?‘ forany 0 < a < 1.

3. w(t) has additional local regularity in the following sense:
there exists x, € R? such that for any x # x,, there exists a
neighborhood Ny 3 x, tx > 0 such that w(t,-) € C>(Ny) for
any 0 <t <t,.
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Conti.

» For any 0 < tg < 1, we have
€SS-SUPg< <t llw(t, ')HHl = +00.

More precisely, there exist 0 < t} < t2 < % open precompact
sets Q,, n=1,2,3,--- such that w(t) € C*>(Q2,) for all
0<t<t? and

n

va(tv ')||L2(Qn) >n, Vte [tr%a tr21 :
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Comments: uniqueness

» Yudovich '63: existence and uniqueness of weak solutions to
2D Euler in bounded domains for L*° vorticity data.
» Yudovich '95: improved uniqueness result (for bounded
domain in general dimensions d > 2) allowing vorticty
w € Npy<p<oolP and |lwl|, < CO(p) with O(p) growing
relatively slowly in p (such as 6(p) = log p).
» Vishik '99 uniqueness of weak solutions to Euler in RY, d > 2,
under the following assumptions:
> welP 1< py<d,
» For some a(k) > 0 with the property

o 1
——dk = +oo0,
A a(k)

it holds that
K
‘Z |\P2,w|\oo‘ < const -a(k), Vk>4.
j=2

» Uniqueness OK in our construction: uniform in time L*°
control of the vorticity w
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3D case

Without going into any computation, you realize:
» One of difficulty in 3D: lifespan of smooth initial data

» Technical issues: make judicious perturbation in H5/2 while
controlling the lifespan!

» Vorticity stretching
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Comments (contin...)

» Critical norm K2 for vorticity (H% for velocity).
» A technical nuissance: nonlocal fractional differentiation
operator |V\%
» Theorem 1-Theorem 4 can be sharpened significantly: e.g.
l|uo — U(()g)HBd/p+1 <€,
P,q

€ss-SUPg <, || U(t, ')HBS,/J;H = 400

for any ty > 0.
» Similarly: Sobolev Wd/P+LpP Triebel-Lizorkin etc.
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Consider 2D Euler in vorticity formulation:
Orw + ATIVw - Vw = 0.

Critical space: H(R?) for w (H? for velocity u)
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Step 1: Creation of large Lagrangian deformation
» Flow map ¢ = ¢(t, x)

{at¢(tax) = U(t, qb(t,X)),
#(0,x) = x.

» Forany 0 < T <« 1, B(x0,9) C R2 and § < 1, choose initial
(vorticity) data wgo) such that

o + w0 e + WP < 1,
and

sup HD¢a(t» )”oo > L
0<t<T

¢4 is the flow map associated with the velocity u = u,.
» Judiciously choose wgo) as a chain of bubbles concentrated
near origin (respect H! assumption!)

» Deformation matrix Du remains essentially hyperbolic

36
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Step 2: Local inflation of critical norm.

>

The solution constructed in Step 1 does not necessarily obey
supo<r< 7 [[Vwa(t)ll2 > 1.

Perturb the initial data w® and take
1.
wp = wf 4 7 sin(kf (x))g (x),

where k is a very large parameter.

> ||g|l2 ~ o(1), f captures ||Dpa(t, )] co-

A perturbation argument in W% to fix the change in flow
map

As a result, in the main order the H! norm of the solution
corresponding to wf)o) is inflated through the Lagrangian
deformation matrix D¢,.

Rem: Nash twist, Onsager (De Lellis-Szekelyhidi)
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Step 3: Gluing of patch solutions

» Repeat the local construction in infinitely many small patches
which stay away from each other initially.

» To glue these solutions: consider two cases.
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Noncompact case...

» Case 3a: noncompact data

» Add each patches sequentially and choose their mutual
distance ever larger!

REM: this is the analogue of weakly interacting particles in
Stat Mech.
» Key properties exploited here:

» finite transport speed of the Euler flow;
» spatial decay of the Riesz kernel.
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Living on different scales...

» Case 3b: compact data
» Patches inevitably get close to each other!

> Need to take care of fine interactions between patches
(Strongly interacting case!)
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3b (contin...): a very involved analysis

» For each n > 2, define w<,_1 the existing patch and w, the
current (to be added) patch

» There exists a patch time T, s.t. for 0 < t < T, the patch
wp has disjoint support from w<,_1, and obeys the dynamics

Orwn + A WVroe, 1 - Vw, + A7V 0, - Vw, = 0.

» By a re-definition of the patch center and change of variable,

Wy, satisfies
Oeon + ATIVLED, - Vi,
+ b(t) (—yy1> V&, +r(t,y) - Vo, =0,
2

where b(t) = O(1) and |r(t,y)| < |y/?.

» Re-do a new inflation argument!
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3b (conti...)

» Choose initial data for w, such that within patch time
0 < t < T, the critical norm of w,, inflates rapidly.

» As we take n — oo, the patch time T, — 0 and w, becomes
more and more localized
» the whole solution is actually time-global.

» During interaction time T, ( Smoothness in limited patch
time!) the patch w, produces the desired norm inflation since
it stays well disjoint from all the other patches.
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Difficulties in 3D: a snapshot

» First difficulty in 3D: lack of LP conservation of the vorticity.
» Deeply connected with the vorticity stretching term (w - V)u

» To simplify the analysis, consider the axisymmetric flow
without swirl

O (%) +(u-V) (%) =0, r=\/x2+x3, x=(x1,x,2).

» Owing to the denominator r, the solution formula for w then
acquires an additional metric factor (compared with 2D)
which represents the vorticity stretching effect in the
axisymmetric setting.

» Difficulty: control the metric factor and still produce large
Lagrangian deformation.
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Difficulties in 3D (conti..)

» The best local theory still requires w/r € L31(R3)

» The dilemma: need infinite ||w/r|[;31 norm to produce
inflation.

» A new perturbation argument: add each new patch w, with
sufficiently small ||wp|lcc norm (over the whole lifespan) such
that the effect of the large ||w,/r|| 31 becomes negligible.

» The spin-off: local solution with infinite ||w/r|[;31 norm!

» More technical issues...
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In summary

» Our new strategy: Large Lagrangian deformation induces
critical norm inflation

» Exploited both Lagrangian and Eulerian point of view
» A multi-scale construction!
» In stark contrast: Hl-critical NLS in R3:

i0;u+ Au = |ul*u

is wellposed for ug € H'(R3)
» Flurry of more recent developments

» Proof of endpoint Kato-Ponce (conjectured by
Grafakos-Maldonado-Naibo)

» C™ case: anisotropic Lagrangian deformation, flow decoupling
Misolek-Yoneda, Masmoudi-Elgindi,- - - ...
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