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Introduction

This talk is mostly based on joint work with A. Nahmod (UMass). This
work is concerned with long time existence of solutions to certain
evolution equations obtained by randomizing the initial data.
At the end of the talk I will also present a new result by D. Mendelson
(MIT) who instead considered the question of non-squeezing for the flow
of a certain NLKG equation which is only defined almost surely.

The main theme of the talk is the following: Proving long time existence
and stability for large data for evolution equation that are critical or
supercritical is very hard. I will explain how introducing techniques that
exploit randomness can help in this context.

Note: The words critical, supercritical, randomness and
non-squeezing will be introduced below in details.

Gigliola Staffilani (MIT) Randomization and existence of large data solutions November 21-23 3 / 43



Some Backgroud
Consider the Cauchy IVP for the p-NLS equation:{

iut + ∆u = ±|u|p−1u,
u(x ,0) = u0(x) ∈ Hs x ∈ Rn or Tn

Scaling: The scale invariant norm is sc := n
2 −

2
(p−1) .

Hs data with s > sc is subcritical; s = sc is critical; s < sc is supercritical.

Lots of progress in the last 20 years in the study of nonlinear dispersive
and wave equations.

The thrust of this body of work has focused on deterministic aspects of
wave phenomena.

Yet there remain some important open questions especially in the
supercritical case.

I Defocusing case: does blow up occur? (unknown despite strong
ill-posedness results (”norm explosion” ) by Christ, Colliander and Tao.)
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p-NLS: Deterministic GWP Results on Rn

Critical Data Results :
I Global well-posedness and scattering for energy-critical (sc = 1) NLS in Rn

F Defocusing: Bourgain; Grillakis; Colliander-Keel-Staffilani-Takaoka-Tao;
Killip-Visan, X. Zhang, Dodson.

F Focusing: Kenig-Merle (concentrated compactness /rigidity method) and
Killip-Visan.

I Global well-posedness and scattering for mass-critical (sc = 0) NLS in Rn

F radial: Tao, Visan-Killip, X. Zhang.
F nonradial: Dodson

I Global well-posedness and scattering for other critical regularities sc under
the assumption of a uniform in time bound on the scale invariant norm

F For sc > 1 for defocusing NLW and NLS by Kenig-Merle; Killip-Visan; Bulut.
F For 0 < sc < 1 for defocusing NLS by Kenig-Merle (sc = 1

2 , 3D); J. Murphy (14’).
F Assumption is in spirit of Escauriaza, Seregin and Sverak work on the Navier-Stokes

equation.

Supercritical Data Results: (?)
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p-NLS: Deterministic GWP Results on Tn

Critical Data Results:
I Global well-posedness for energy-critical NLS

F Defocusing and n = 3: Ionescu-Pausader (large data, based on a work by
Ionescu-Pausader-Staffilani); and previously Herr-Tzvetkov-Tataru (small data).

I Global well-posedness for mass-critical NLS
F (?) In fact there are no even local results at the L2 level!
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Deterministic→ Nondeterministic Approach

Bourgain considered the L2-critical1:

Theorem (Rational Torus; Bourgain(96’)){
iut + ∆u = |u|2u

− (
∫
|u|2dx) u

u(x ,0) = u0(x), x ∈ T2,

is almost sure globally well-posed below L2; i.e. for supercritical data
u0 ∈ H−ε.

Very informal definition of almost sure well-posedness
Given µ a probability measure on the space of initial data X (eg. X = Hs)

There exists Y ⊂ X , with µ(Y ) = 1 and such that for any u0 ∈ Y there exist
T > 0 and a unique solution u to the IVP in C([0,T ],X ) that is also stable in
the appropriate topology.

1In 93’ Bourgain had proved LWP for s > 0 and GWP in H1(T2) for cubic NLS
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Bourgain’s interest was to construct an invariant Gibbs measure derived
from the PDE above viewed as an infinite dimension Hamiltonian system2:

1 Established local well posedness for ‘typical elements’ in the support of
the measure; i.e. for random data in H−ε(T2), ( an ’almost sure’ -in the
sense of probability- LWP in H−ε(T2)).

2 Constructed an invariant Gibbs measure and use it to extend the local
result to a global one in the almost sure sense.

I The invariance of the Gibbs measure is used in lieu of conserved
quantities- to control the growth in time of those solutions in its support.

Furthermore, Bourgain shows that almost surely in ω the nonlinear part

w : = u − S(t)φω

is smoother than the linear part.

2after Lebowitz, Rose and Speer’s and Zhidkov’s works.
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On Randomized Data
In Bourgain’s case, for the cubic NLS on T2, the typical element in the support
of the Gibbs measure consists of randomized data:

φω(x) =
∑ gn(ω)

|n|
ei〈x,n〉 ∈ H−ε(T2),

where {gn(ω)}n are i.i.d. standard (complex/real) centered (Gaussian)
random variables on a probability space (Ω,F ,P).

Remark
Note that

φ(x) :=
∑
n∈Z2

1
|n|

ei〈x,n〉 H−ε

and that φω(x) defines almost surely in ω a function in H−ε;

but not in Hs, s ≥ 0

Randomization does not improve regularity in terms of derivatives!
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Randomization = Better estimates

The improvement is with respect to Lp spaces almost surely.

Key Point: Consider the randomized initial data φω(x). Although this initial
data is in a rough space its linear flow S(t)φω(x) enjoys almost surely
improved Lp bounds. These bounds yield improved nonlinear estimates
almost surely arising in the analysis of

w(t , x) = u(t , x)− S(t)φω(x),

where u is the solution of the equation at hand and as a consequence w
solves a difference equation.
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Why does Randomization Helps?

It is a phenomena akin to Kintchine inequalities used in Littlewood-Paley
theory. Classical results of Rademacher, Kolmogorov, Paley and Zygmund
show that random series enjoy better Lp bounds than deterministic ones.

Let {gn(ω)} be a sequence of complex i.i.d. zero mean Gaussian random
variables on a probability space (Ω,A,P) and (cn) ∈ `2.

Define
F (ω) :=

∑
n

cngn(ω)

Then, there exists C > 0 such that for every q ≥ 2 and every (cn)n ∈ `2,∥∥∥∥∥∑
n

cngn(ω)

∥∥∥∥∥
Lq(Ω)

≤ C
√

q

(∑
n

c2
n

) 1
2

.
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More generally one uses the following, where k would represent the number
of random terms in the multilinear estimate at hand.

Proposition (Large Deviation-type)
Let d ≥ 1 and c(n1, . . . ,nk ) ∈ C. Let {gn}1≤n≤d ∈ NC(0,1) be complex
centered L2 normalized independent Gaussians. For k ≥ 1 denote by
A(k ,d) := {(n1, . . . ,nk ) ∈ {1, . . . ,d}k , n1 ≤ · · · ≤ nk} and

Fk (ω) =
∑

A(k,d)

c(n1, . . . ,nk )gn1 (ω) . . . gnk (ω).

Then for p ≥ 2
‖Fk‖Lp(Ω) .

√
k + 1(p − 1)

k
2 ‖Fk‖L2(Ω).
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As a consequence from Chebyshev’s inequality for every λ > 0,

P({ω : |Fk (ω)| > λ }) ≤ exp

 −C λ
2
k

‖F (ω)‖
2
k
L2(Ω)

.

The large deviation result above with -say -

λ = δ−
k
2 ‖Fk (ω)‖L2(Ω)

so that in a set Ωδ with P(Ωc
δ) < e−

1
δ we can replace

|Fk (ω)|2 =

∣∣∣∣∣∣
∑

A(k,d)

c(n1, . . . ,nk )gn1 (ω) . . . gnk (ω)

∣∣∣∣∣∣
2

by

δ−k‖Fk (ω)‖2
L2(Ω) = δ−k

∑
A(k,d)

c(n1, . . . ,nk )2
(∫

Ω

gn1 (ω) . . . gnk (ω) dω
)2

.
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Randomization without invariant measure (a.s LWP)
In this vein, consider

(IVP)
{

ut + P(D)u = F (u) x ∈ M, t > 0
u(x ,0) = φ(x),

and assume that φ ∈ X s, with s small, and let φ̂(n) = an.

Randomize φ as φω :=
∑

n∈Zd an gn(ω) ei〈x,n〉.
Assume vω is the linear evolution with initial datum φω.
Use the fact that vω has better Lp estimates than φ almost surely to show
that w = u − vω solves a difference equation that lives in a smoother
space than X s. Obtain for w a deterministic local well-posedness.

Remark (Important)
The difference equation that w solves is not back to merely being at a
‘smoother’ level but rather it is a hybrid equation with nonlinearity =
= supercritical (but random) + deterministic (smoother).
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Probabilistic Local to Global: known mechanisms

Invariant Gibbs or weighted Wiener measures- when available.
The use of the invariance of the measure has limitations since in higher
dimensions (d ≥ 3) can’t renormalize canonical construction; also its
support (data) would live on extremely rough spaces (multilinear
analysis so far not possible). Constructions in higher dimensions (eg.
ball) are under radial assumptions.

Sometimes may use energy methods (eg. Burq-Tzvetkov and Pocovnicu
for NLW; Nahmod-Pavlovic-S. for Navier Stokes)

Sometimes may use adaptation to this setting of Bourgain’s high-low
method (eg. Colliander-Oh and Poiret-Roberts-Thomann for NLS,
Luerhmann-Mendelson and Bulut, NLW...)
These methods also have limitations!
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Randomization techniques have now been used with or without the help
of the invariant measure in several contexts and regimes:

After Bourgain’s work in 94-96’; in 07-08 work by Burq-Tzvetkov (NLW,
supercritical), T. Oh’s (coupled KdV system, subcritical) and Tzvetkov
(NLS, subcritical). Lots of work followed:

I Schrödinger Equations: Bourgain, Tzvetkov, Thomann,
Thomann-Tzvetkov, A.N.-Oh-Rey-Bellet-Staffilani, Nahmod-Rey-Bellet-
Sheffield-S., Burq-Thomann-Tzevtkov, Colliander-Oh, Y. Deng,
Burq-Lebeau, Bourgain-Bulut, Nahmo.- S., Poiret-Robert-Thomann,
Bényi- Oh- Pocovnicu, ...

I KdV Equations: Bourgain, T. Oh and Richards.

I NLW Equations: Burq-Tzvetkov, de Suzzoni, Bourgain-Bulut,
Luehrmann-Mendelson, Pocovnicu. See also S. Xu for the construction
of an invariant measure on R.

I Benjamin-Ono Equations: Y. Deng, Tzvetkov-Visciglia. and Y.
Deng-Tzvetkov-Visciglia.

I Navier-Stokes Equations: Nahmod-Pavlovic-S. (infinite ‘energy’ global
(weak) sols in T2,T3, global energy bounds, uniqueness in T2). Also work by
C.Deng-Cui and Zhang-Fang
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To sum up:

When deterministic statements about existence, uniqueness and stability
of solutions to certain evolution equations are not feasible/available:

→ turn to a more probabilistic point of view

→ within reach at this time: investigate these problems from a
nondeterministic viewpoint; e.g. for random data.

Situations when such a point of view is desirable include:

supercritical regime

when certain type of ill-posedness is present,

when there still remains a gap between local and global wellposedness
(subcritical regime relative to the scaling threshold),

Setting could be Td ,Md , or Rd . In the latter, there are also probabilistic
scattering results.
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The Quintic NLS in T3 (Rational)

We consider the energy-critical quintic nonlinear Schrödinger equation{
iut + ∆u = λu|u|4 x ∈ T3

u(0, x) = φ(x) ∈ Hγ(T3),

below H1(T3) (ie. for some γ < 1) and where λ = ±1

Herr, Tzvetkov and Tataru (10’) proved small data global well posedness in
H1(T3).

Ionescu and Pausader (12’) proved large data global well posedness in H1(T3)
in the defocusing case

I Rely on large data GWP in R3 for the energy-critical quintic NLS (by
Colliander-Keel-Staffilani-Takaoka-Tao (03’)).

Our interest is first to establish a local almost sure well posedness for random data
below H1(T3) that is in the supercritical regime relative to scaling, and then address
g.w.p.
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The Initial Data

The problem we are considering here is the analogue of the supercritical
well-posedness result proved by Bourgain for the periodic mass critical cubic NLS in
2D; that is - a.s for data in H−ε(T2), ε > 0 mentioned above.

In our problem we consider data φ ∈ H1−α−ε(T3) for any ε > 0 of the form

φ(x) =
∑
n∈Z3

1

〈n〉 5
2−α

ein·x randomization−−−−−−−→ φω(x) =
∑
n∈Z3

gn(ω)

〈n〉 5
2−α

ein·x

where (gn(ω))n∈Z3 is a sequence of complex i.i.d centered Gaussian random variables
on a probability space (Ω,A,P).
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Heart of the matter

Assume u solves our IVP, then we define w := u − S(t)φω, where S(t)φω is the
linear evolution of the initial profile φω.

We study the IVP for w which solves a difference equation with nonlinearity

Ñ(w) := |w + S(t)φω|4(w + S(t)φω).

We expect to prove that w belongs to Hs for some s > 1.

The heart of the matter is to prove multilinear estimates for Ñ(w) to then be able
to set up a contraction method to obtain well-posedness.

When the NLS equation is considered, multilinear estimates for Ñ(w) can be
carried out only after having removed certain resonant terms involved in the
nonlinear part of the equation.

I If the nonlinearity is cubic a Wick ordering of the Hamiltonian is needed (see
Bourgain (96’), Colliander-Oh (12’)).
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Analogies and Difficulties for Local Well-posedness

There are four major complications in the work that we present here
compared to the work of Bourgain:

a quintic nonlinearity increases quite substantially the different cases that
needs to be analyzed,

the counting lemmata in a 3D integer lattice are much less favorable than
in a 2D lattice, (here only rational torus!),

the Wick ordering is not sufficient to remove certain bad resonant
frequencies.

We work with the (critical) atomic function spaces X s as in
Herr-Tataru-Tzvetkov whose norm is not invariant if one replaces the
Fourier transform with its absolute value.
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What Needs to be Removed?

To understand the problem, we write the Fourier coefficients of the quintic
expression |u|4u(x) and identify the part that needs to be removed so that a
more regular estimate holds after randomization. Once we separate those
terms, we are left with nonlinear terms that are manageable.

Here we consider the linear evolution of randomized data that barely misses
to be in H1(T3); ie. φ̂ω(n) := gn(ω)

〈n〉β for β < 5
2 .

The randomness coming from (gn(ω)) will allow us to say that in a certain
space the nonlinearity increases its regularity so that it can hold a bit more
than one derivative.

We realize immediately that terms containing “too many” pairs of equal
frequencies have no chance to improve their regularity because they are
simply linear with respect to an, as we will see later.
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Formally, in the work of Bourgain and of Colliander-Oh, who consider the
cubic NLS, the nonlinear term that they can control is

v |v |2 − v
(∫

Td
|v |2 dx

)
︸ ︷︷ ︸

mass

d = 1,2;

and this is achieved by Wick ordering the Hamiltonian. An important
ingredient in making this successful is that the mass is independent of
time.

In our case we can estimate

v |v |4 − 3v
(∫

T3
|v |4 dx

)
but Wick ordering is not helpful since it does not remove the
problematic term involving

∫
T3 |u|4(t , x)dx , which moreover is not

constant in time!
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The Gauged Equation: well-posedness set up

We prove our almost sure local well-posedness result in two steps.

Step 1) We consider the initial value problem:{
ivt + ∆v = λ

(
v |v |4 − 3v

(∫
T3 |v |4 dx

))
x ∈ T3

v(0, x) = φω(x),

where λ = ±1 and as above

φω(x) =
∑
n∈Z3

gn(ω)

〈n〉 5
2−α

ein·x .

and prove almost sure local well-posedness in a certain Banach space
(X , ‖ · ‖).
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Step 2) We then consider the following gauged solution:

u(t , x) := eiλ
∫ t

0 βv (s) dsv(t , x).

where

βv (t) = 3
∫
T3
|v(t , x)|4 dx .

Observe that u solves the original quintic NLS with the same data.

A similar gauge transformation was used by S. (97’) in the context of gKdV.
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Back from the gauge

Step 3): We transfer the well-posedness result for the gauged initial value
problem in the space (X , ‖ · ‖) to a well-posedness result for the original initial
value problem by using a metric space given by (X ,d) where

d(u, v) := ‖e−iλ
∫ t

0 βu(s) dsu(t , x)− e−iλ
∫ t

0 βv (s) dsv(t , x)‖.

One can show that this is indeed a metric by using the properties of the norm
‖ · ‖ and the fact that if

e−iλ
∫ t

0 βu(s) dsu(t , x) = e−iλ
∫ t

0 βv (s) dsv(t , x)

then βv (t) = βu(t) and hence u = v .
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Main Results: The Gauged Problem

We have:

Theorem (Gauged IVP)
Let 0 < α < 1

12 , s = s(α) > 1 and φω as above. Then there exists,
0 < δ0 � 1 and r = r(s, α) > 0 s.t. for any δ < δ0, there exists Ωδ ∈ A with

P(Ωc
δ) < e−

1
δr ,

and for each ω ∈ Ωδ there exists a unique solution v of the gauged quintic
NLS in the space

S(t)φω + X s([0, δ)),

with initial condition φω.
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Back to the NLS: Main Result

Following the remarks above we denote by X s([0, δ))d the metric space
(X s([0, δ)), d) where d is the metric defined above, we obtain

Theorem (Nahmod–S.)
Let 0 < α < 1

12 , s = s(α) > 1 and φω as above. Then there exists 0 < δ0 � 1
and r = r(s, α) > 0 s.t. for any δ < δ0, there exists Ωδ ∈ A with

P(Ωc
δ) < e−

1
δr ,

and for each ω ∈ Ωδ there exists a unique solution u of the (original) quintic
NLS in the space

S(t)φω + X s([0, δ))d ,

with initial condition φω.
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Resonances Revisited
Let us define

N(v) := v |v |4 − 3v
(∫

T3
|v |4 dx

)
.

After taking Fourier transform in space one can show that if v̂(n, t) = an(t)

FN(v)(n, t) =
7∑

k=1

Jk (an(t))

=
∑

n=n1−n2+n3−n4+n5;
n1,n3, n5 6=n2, n4

an1an2an3an4an5

+ 6m
∑

n=n1−n2+n3;
n1,n3,6=n2

an1an2an3

+ 6
∑

n=n1−n2+n3;
n1,n3,6=n2

|an1 |2 an1an2an3 − 3
∑

n=n1−n2+n3
n1,n3,6=n2

an1 |an2 |2an2an3

+ 2
∑

n=2n1−n2

|an1 |2a2
n1

an2

+ extra ‘cubic’ terms . . .
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We are interested in solving (not for v but) for

w = v − vω0 where vω0 = S(t)φω

since we expect that w is a smoother function.

We use a “duality” result in [HTT] and several trilinear and quintilinear
estimates involving random and deterministic functions.

We use a contraction method to prove well-posedness of the difference
IVP (zero data) in the atomic space X s thus we need to estimate the
Duhamel term.

I The atomic spaces were introduced in the context of critical dispersive equations by
Koch-Tataru (05’-07’) and Hadac-Herr-Kock (09’) and then used by [HTT] and [IP]
in the periodic 3D quintic NLS that we are treating here.
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On Global Solutions
Extending these solutions globally in time is hard since the invariant measure
is supported only on Hs, s < − 1

2 ! Other possible routes could be:

High-Low method of Bourgain and randomization. Work by
Colliander-Oh; Luehrmann-Mendelson; Poiret-Roberts-Thomann
(mass-subcritical, energy-subcritical).
We are energy-critical so cannot implement at the moment: one would
need to use the global result in H1 by Ionescu-Pausader where the
bounds for the “Strichartz norm” of the solution are tower-exponential in
the energy.
Recent conditional argument of Bényi- Oh- Pocovnicu for the energy
critical NLS in R3. They assume that the solutions to the difference
equation have uniformly bounded critical Sobolev norms and then they
use a perturbation lemma, first introduced by Colliander, Keel, Staffilani,
Takaoka and Tao, to show that the solution can be extended.

I Randomization is used to prove that in small time intervals the random term
in the difference equation is small.

Recent result of Pocovnicu similar to the one above but for energy critical
NLW in R4,R5. Here she is able to remove the conditional assumption by
using a “probabilistic” energy bound on the difference equation.
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On global solutions (long time)
Fix T > 0, let α > 0 be as in the a.s. LWP and consider randomized initial
data:

φω(x) =
∑
n∈Z3

gn(ω)

〈n〉 5
2−α

ein·x in H1−ε(T3).

Theorem (Nahmod–S.)
Let 0 < α < 1

12 , s = s(α) > 1 and φω as above. Fix a large interval of time
[0,T ]. Then there exists 0 < δ ∼ T−

1
4 and there exists Ωδ ∈ A with

P(Ωc
δ) < e−δ

and for each ω ∈ Ωδ there exists a unique solution u of the (original) quintic
NLS in the space

S(t)φω + X s([0,T ))d ,

with initial condition φω.
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In short: There exists σ = σ(T , α) > 0 and a set Ωσ, with P(Ωσ) > σ such that
for any ω ∈ Ωσ, we have that φω evolves globally to time T .

Remark
This is a large data result.
As T →∞ the size of the set of initial data giving rise to solutions on the
whole interval [0,T ] shrinks to zero.

Idea of the proof: It is a combination of an iterated continuity argument and
the fact that the random term can be made small.

Remark
A similar argument can be used to show almost sure global well-posedness
for small data.
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Question:

Can we do better in 3D? Most likely.... but not there yet −→ new ingredients,
ideas and some extra work (!).

Note:
• Poiret-Roberts-Thomann results for the cubic NLS on R3 are global
(supercritical, but energy subcritical) but also on a set of positive measure.

• One can think of this probabilistic approach as a different method than the
one -for example- used by Krieger-Schlag to exhibit large data global
supercritical solutions to the septic NLW in R3 (sc = 7/6).
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Finite Dimensional Hamiltonian Systems
This last part of the talk deals with an infinite version of a Non-squeezing
Theorem. We first recall the finite dimension version.

Hamilton’s equations of motion have the antisymmetric form

q̇i =
∂H(p,q)

∂pi
, ṗi = −∂H(p,q)

∂qi

the Hamiltonian H(p,q) being a first integral:

dH
dt

:=
∑

i

∂H
∂qi

q̇i +
∂H
∂pi

ṗi =
∑

i

∂H
∂qi

∂H
∂pi

+
∂H
∂pi

(−∂H
∂qi

) = 0.

By defining y := (q1, . . . ,qk ,p1, . . . ,pk )T ∈ R2k (2k = d) we can rewrite the
system in the compact form

dy
dt

= J∇H(y), J =

[
0 I
−I 0

]
.
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The Non-Squeezing Theorem in R2k

We recall a version of Gromov’s famous theorem:

Theorem (Finite Dimensional Non-squeezing)
Assume that Φt is the flow generated by a finite dimensional Hamiltonian
system just recalled and assume that there is an underlining symplectic
structure compatible with the flow. Fix y0 ∈ R2k and let Br (y0) be the ball in
R2k centered at y0 and radius r . If

ZR(z0) := {y = (q1, . . . ,qk ,p1, . . . ,pk ) ∈ R2k/|qi − z0| ≤ R},

is a cylinder of radius R, and

Φt (Br (y0)) ⊂ ZR(z0),

it must be that r ≤ R.
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The Non-Squeezing Theorem

Can one generalize this theorem to the infinite dimensional setting given
by a periodic dispersive equation written in Hamiltonian form?
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The infinite dimensional Non-squeezing Theorem

Generalizing this kind of result in infinite dimensions has been a long time
project of Kuksin who proved, roughly speaking, that compact perturbations
of certain linear dispersive equations do indeed satisfy the non-squeezing
theorem. Kuksin work tough does not apply for example to the Cauchy
problem {

(i∂t + ∆)u = −|u|2u
u(0, x) = u0(x), where x ∈ T.

Using Strichartz estimates and the conservation of mass one can prove
global well-posedness for data in L2, see Bourgain. Hence one can define a
global flow map

Φ(t)u0 := u(x , t).

It is easy to show that the L2 space equipped with the form

ω(f ,g) = 〈if ,g〉L2

is a symplectic space the global flow Φ(t) is a symplectomorphism.
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The cubic, periodic, defocusing nonlinear Schrödingier Cauchy problem
introduced above is not a compact linear perturbation. Nevertheless
Bourgain proved the following theorem:

Theorem (Infinite Dimension Non-squeezing)
Assume that Φt is the flow generated by the cubic, periodic, defocusing NLS
equation in L2. If we identify L2 with l2 via Fourier transform, we let Br (y0) be
the ball in l2 centered at y0 ∈ l2 and radius r ,

ZR(z0) := {(an) ∈ l2/|ai − z0| ≤ R}

a cylinder of radius R and

Φt (Br (y0)) ⊂ ZR(z0),

at some time t, then it must be that r ≤ R.
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Idea of the Proof
The proof of this theorem is based on the following steps

Use the projection operator PN to project the Cauchy problem onto a
finite dimensional Hamiltonian system.
Use Gromov’s Theorem.
Show that the flow ΦN(t) of the projected problem approximates well the
flow Φ(t) of the original problem.

The third item is the most difficult to prove. The tools used are strong
multilinear estimates based on the Strichartz estimates.

Remark
Unfortunately Bourgain’s argument may not work for other kinds of dispersive
equations. For example for the KdV problem, the lemma in Bourgain’s work
that gives the good approximation of the flow Φ(t) by ΦN(t) does not hold.
This has to do with the number of interacting waves in the nonlinearity. For the
KdV problem one can still prove the non-squeezing theorem holds, but the
existing proof is indirect and it has to go through the Miura transformation, see
Colliander-Keel-S-Takaoka- Tao.
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Non-squeezing and A.S. Well-posedness

Periodic, cubic NLKG{
utt −∆u + u + u3 = 0, (t , x) ∈ R× T3

(u, ∂tu)
∣∣
t=0 = (u0,u1) ∈ H

1
2 (T3)× H−

1
2 (T3) =: H1/2(T3)

Hamiltonian:

H(u) =
1
2

∫
|∇u|2 + |u|2 + |ut |2 +

1
4

∫
|u|4.

Symplectic phase space H 1
2 (Td ).

Critical regularity for cubic NLKG (via NLW scaling sc = d
2 −

2
p−1 ).

⇒ no global flow and no control on local time of existence
There is a global almost sure flow, [Burq-Tzvetokov, Mendelson].
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Statement of main results

Theorem (Mendelson, 2014)

Let Φ denote the flow of the cubic nonlinear Klein-Gordon equation. Fix
0 < R, k0 ∈ Z3, z ∈ C2, and u∗ ∈ H1/2(T3). For all 0 < η < R, there exists
N ≡ N(η, ‖u∗‖,R, k0) and σ ≡ σ(η, ‖u∗‖,R, k0) > 0 such that

Φ(σ)
(
P2N BR(u∗)

)
6⊆ Zr (z; k0)

for all r < R − η.

Zr (z; k0) =
{

(u0, u1) ∈ Hs : 〈k0〉1/2|û0(k0)− z1|+ 〈k0〉−1/2|û1(k0)− z2| < r
}
.

Remark
This theorem is proved by combining techniques that use randomization like explained
in previous slides, and more deterministic tools, such as perturbation lemmas,
definition of capacity etc. More on Dana’s talk.
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Some further questions
Cubic NLS on T3 ( =Ḣ

1
2 critical) and on T4 (Ḣ1-critical) -work in progress-.

Improve theorems on weak/wave turbulence:
I Growth (lower/upper bounds) of (higher) Sobolev norms on tori.

F After work by Colliander-Keel-S.-Takaoka-Tao, V. Sohinger, Z. Hani,
Guardia-Kaloshin, Hani-Pausader-Tzvetkov-Visciglia.
(c.f. related work by Faou-Germain-Hani, Bourgain-Demeter)

I Construct non-equilibrium invariant measures for Hamiltonian PDE. Work in
Progress by Z. Hani, A. Nahmod, L. Rey-Bellet and G. S.: Non-equilibrium
invariant measures associated to cubic NLS.

F Invariant measures with entropy production←→ Transfer of energy
F Ideas from stochastic PDE models: Work by L. Rey-Bellet et al. on

non-equilibrium statistical mechanics of open classical systems. Work by M.
Hairer and J. Mattingly in the case of anharmonic oscillator chains.

Study the ergodicity of (invariant) measures associated to infinite
dimensions Hamiltonian flows.
More sophisticated Probabilistic notions of uniqueness (3D NS, etc).

I e.g. Albeverio-Cruzeiro (90’) for Euler.

Probabilistic approaches to study properties of discrete versions of these
equations (Chatterjee-Kirkpatrick, Chatterjee).
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