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Toda flows, gradient flows and the generalized Flaschka map

Anthony Bloch

•Dissipation and Radiation Induced Instability

•Toda and gradient flows, metric and metriplectic flows

• The Pukhanzky condition

• Generalized Flaschka Map

• Dispersionless Toda
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Toda Flow:

Ẋ = [X,ΠSX ]

Double Bracket Flow:

Ẋ = [X, [X,N ]]

– gradient but special case yields Toda. (with Brockett and
Ratiu)

Ṗ = [P, [P,Λ]

(Bloch, Bloch, Flashcka and Ratiu, Total Least Squares).
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Heat equation
ut = uxx

Kahler flow:

ut = (−∆)1/2u

(with Morrison and Ratiu)
Dispersionless Toda flow

ẋ = {x, {x, z}}
(Bloch, Flaschka, Ratiu)

Ẋ = [X,∇H ] + [X, [X,N ]]

– double bracket dissipation (Bloch, Krishnaprasad, Marsden
and Ratiu)
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•Radiation Damping
See Hagerty, Bloch and Weinstein [1999], [2002].
Important early work: Lamb [1900]. Related recent work may

be found in Soffer and Weinstein [1998a,b] [1999] and Kirr and
Weinstein [2001].
• Original Lamb model an oscillator is physically coupled to a

string. The vibrations of the oscillator transmit waves into the
string and are carried off to infinity. Hence the oscillator loses
energy and is effectively damped by the string.

• Lamb model
w(x, t) displacement of the string. with mass density ρ, ten-

sion T . Assuming a singular mass density at x = 0, we couple
dynamics of an oscillator, q, of mass M :
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Figure 0.1: Lamb model of an oscillator coupled to a string.

∂2w

∂t2
= c2∂

2w

∂x2

Mq̈ + V q = T [wx]x=0

q(t) = w(0, t).
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[wx]x=0 = wx(0+, t)−wx(0−, t) is the jump discontinuity of the slope
of the string. Note that this is a Hamiltonian system.

Can solve for w and reduce:
• Obtain a reduced form of the dynamics describing the explicit

motion of the oscillator subsystem,

Mq̈ +
2T

c
q̇ + V q = 0.

The coupling term arises explicitly as a Rayleigh dissipation term
2T
c q̇ in the dynamics of the oscillator.
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Gyroscopic systems:
See Bloch, Krishnaprasad, Marsden and Ratiu [1994].
Linear systems of the form

Mq̈ + Sq̇ + Λq = 0

where q ∈ Rn, M is a positive definite symmetric n× n matrix, S
is skew, and Λ is symmetric and indefinite.

This system Hamiltonian with p = Mq̇, energy function

H(q, p) =
1

2
pM−1p +

1

2
qΛq

and the bracket

{F,K} =
∂F

∂qi
∂K

∂pi
− ∂K

∂qi
∂F

∂pi
− Sij

∂F

∂pi

∂K

∂pj
.

Aarise from simple mechanical systems via reduction; normal
form of the linearized equations when one has an abelian group.
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Dissipation induced instabilities—abelian case: Under the above
conditions, if we modify the equation to

Mq̈ + (S + εR)q̇ + Λq = 0

for small ε > 0, where R is symmetric and positive definite, then
the perturbed linearized equations

ż = Lεz,

where z = (q, p) are spectrally unstable, i.e., at least one pair of
eigenvalues of Lε is in the right half plane.
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• Gyroscopic systens connected to wave fields.

ω

Figure 0.2: Rotating plate with springs.

In Hagerty, Bloch and Weinstein [2002] we describe a gyro-
scopic version of the Lamb model coupled to a standard non-
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dispersive wave equation and to a dispersive wave equation.
Show that instabilities will arise in certain mechanical systems.
In the dispersionless case, the system is of the form

∂2w

∂t2
(z, t) = c2∂

2w

∂z2
(z, t),

M q̈(t) + Sq̇(t) + V q(t) = T
[∂w

∂z

]
z=0

w(0, t) = q(t),

w =
[
w1(z, t) · · · wn(z, t)

]T
is the displacement of the string in the

first n dimensions and [∂w
∂z ]z=0 is the jump discontinuity in the

slope of the string.
• Can reduce dynamics to essentially:
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M q̈(t) =− Sq̇(t)− V q(t)− 2T

c
q̇(t),
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Figure 0.3: Gyroscopic Lamb coupling to a spherical pendulum.
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Metriplectic Systems.
A metriplectic system consists of a smooth manifold P , two

smooth vector bundle maps π, κ : T ∗P → TP covering the identity,
and two functions H,S ∈ C∞(P ), the Hamiltonian or total energy
and the entropy of the system, such that

(i) {F,G} := 〈dF, π(dG)〉 is a Poisson bracket; in particular π∗ =
−π;

(ii) (F,G) := 〈dF, κ(dG)〉 is a positive semidefinite symmetric
bracket, i.e., ( , ) is R-bilinear and symmetric, so κ∗ = κ, and
(F, F ) ≥ 0 for every F ∈ C∞(P );

(iii) {S, F} = 0 and (H,F ) = 0 for all F ∈ C∞(P ) ⇐⇒ π(dS) =
κ(dH) = 0.
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Metriplectic Dynamics:

d

dt
F = {F,H + S} + (F,H + S) = {F,H} + (F, S)

Application to Loop Groups...
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An important and beautiful mechanical system that describes
the interaction of particles on the line (i.e., in one dimension) is
the Toda lattice. We shall describe the nonperiodic finite Toda
lattice following the treatment of Moser.

This is a key example in integrable systems theory.
The model consists of n particles moving freely on the x-axis

and interacting under an exponential potential. Denoting the
position of the kth particle by xk, the Hamiltonian is given by

H(x, y) =
1

2

n∑
k=1

y2
k +

n−1∑
k=1

e(xk−xk+1).
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The associated Hamiltonian equations are

ẋk =
∂H

∂yk
= yk , (0.1)

ẏk = −∂H
∂xk

= exk−1−xk − exk−xk+1 , (0.2)

where we use the convention ex0−x1 = exn−xn+1 = 0, which corre-
sponds to formally setting x0 = −∞ and xn+1 = +∞.

This system of equations has an extraordinarily rich structure.
Part of this is revealed by Flaschka’s (Flaschka 1974) change of
variables given by

ak =
1

2
e(xk−xk+1)/2 and bk = −1

2
yk . (0.3)
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In these new variables, the equations of motion then become

ȧk = ak(bk+1 − bk) , k = 1, . . . , n− 1 , (0.4)

ḃk = 2(a2
k − a2

k−1) , k = 1, . . . , n , (0.5)

with the boundary conditions a0 = an = 0. This system may be
written in the following Lax pair representation:

d

dt
L = [B,L] = BL− LB, (0.6)

where

L =

 b1 a1 0 ··· 0
a1 b2 a2 ··· 0

...
bn−1 an−1

0 an−1 bn

 , B =

 0 a1 0 ··· 0
−a1 0 a2 ··· 0

...
0 an−1

0 −an−1 0

 .

Can show system is integrable.
Generalizations: Lie algebras, rigid body on the Toda orbit

(with Gay-Balmaz and Ratiu)
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More structure in this example. For instance, if N is the matrix
diag[1, 2, . . . , n], the Toda flow (0.6) may be written in the following
double bracket form:

L̇ = [L, [L,N ]] . (0.7)

See Bloch [1990], Bloch, Brockett and Ratiu [1990], and Bloch,
Flaschka and Ratiu [1990]. This double bracket equation re-
stricted to a level set of the integrals is in fact the gradient flow
of the function TrLN with respect to the so-called normal metric.

From this observation it is easy to show that the flow tends
asymptotically to a diagonal matrix with the eigenvalues of L(0)
on the diagonal and ordered according to magnitude, recovering
the observation of Moser, Symes.
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• Four-Dimensional Toda. Here we simulate the Toda lattice
in four dimensions. The Hamiltonian is

H(a, b) = a2
1 + a2

2 + b2
1 + b2

2 + b1b2 . (0.8)

and one has the equations of motion

ȧ1 = −a1(b1 − b2) ḃ1 = 2a2
1 ,

ȧ2 = −a2(b1 + 2b2) ḃ2 = −2(a2
1 − a2

2) .
(0.9)

(setting b1 + b2 + b3 = 0, for convenience, which we may do since
the trace is preserved along the flow). In particular, TraceLN is,
in this case, equal to b2 and can be checked to decrease along the
flow.

Figure 0.4 exhibits the asymptotic behavior of the Toda flow.
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Example 1, initial data [1,2,3,4]

Figure 0.4: Asymptotic behavior of the solutions of the four-dimensional Toda lattice.
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It is also of interest to note that the Toda flow may be writ-
ten as a different double bracket flow on the space of rank one
projection matrices. The idea is to represent the flow in the vari-
ables λ = (λ1, λ2, . . . , λn) and r = (r1, r2, . . . , rn) where the λi are the
(conserved) eigenvalues of L and ri,

∑
i r

2
i = 1 are the top com-

ponents of the normalized eiqenvectors of L (see Moser). Then
one can show (Bloch (1990)) that the flow may be written as

Ṗ = [P, [P,Λ]] (0.10)

where P = rrT and Λ = diag(λ).
This flow is a flow on a simplex The Toda flow in its original

variables can also be mapped to a flow convex polytope (see
Bloch, Brockett and Ratiu, Bloch, Flaschka and Ratiu).



22

Schur Horn Polytope

(1,2,3)

Figure 0.5: Image of Toda Flow
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Toda rigid body:

h(c1, c2, a1, a2) = 3
(

(3D2
1 − 2λ)c2

1 + 2dc1c2 + (3D1
2 − 2d)c2

2

)
+ 6

(
a2

1

2B1 −B2

2A1 − A2
+ a2

2

2B2 −B1

2A2 − A1

)
and the associated equations of motion are

ċ1 = −2a2
1

2B1 −B2

2A1 − A2
, ȧ1 = a1

(
(3D2

1 − 2d)c1 + dc2

)
,

ċ2 = −2a2
2

2B2 −B1

2A2 − A1
, ȧ2 = a2

(
(3D1

2 − 2d)c2 + dc1

)
.
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Metrics on finite-dimensional orbits
Let gu be the compact real form of a complex semisimple Lie

algebra g and consider the flow on an adjoint orbit of gu given
by

L̇(t) = [L(t), [L(t), N ]] . (0.11)

Consider the gradient flow with respect to the “normal” metric.
Explicitly this metric is given as follows.

Decompose orthogonally, relative to −κ( , ) = 〈 , 〉, gu = gLu⊕guL
where guL is the centralizer of L and gLu = Im adL. For X ∈ gu
denote by XL ∈ gLu the orthogonal projection of X on gLu . Then
set the inner product of the tangent vectors [L,X ] and [L, Y ] to
be equal to 〈XL, Y L〉. Denote this metric by 〈 , 〉N . Then we
have
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Proposition 0.1. The flow (0.11) is the gradient vector field of H(L) =
κ(L,N), κ the Killing form, on the adjoint orbit O of gu containing the
initial condition L(0) = L0, with respect to the normal metric 〈 , 〉N on
O.

Proof. We have, by the definition of the gradient,

dH · [L, δL] = 〈gradH, [L, δL]〉N (0.12)

where · denotes the natural pairing between 1-forms and tangent vectors and
[L, δL] is a tangent vector at L. Set gradH = [L,X ]. Then (0.12) becomes

−〈[L, δL], N〉 = 〈[L,X ], [L, δL]〉N
or

〈[L,N ], δL〉 = 〈XL, δLL〉 .
Thus

XL = ([L,N ])L = [L,N ]
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and
gradH = [L, [L,N ]]

as required. �

For L and N as above obtain the Toda lattice flow. Full Toda
may be also obtained with a modified metric.
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Now in addition to the normal metric on an orbit there exist
two other natural metrics, the induced and Kahler metrics.
• There is the natural metric b on G/T induced from the invari-

ant metric on the Lie algebra –this is the induced metric.
• There is the normal metric described above which, following

Atiyah we call b1, which comes from viewing G/T as an adjoint
orbit.
• Finally identifying the adjoint orbit with a coadjoint orbit we

obtain the Kostant Kirilov symplectic structure which, together
the fact that G/T is a complex manifold defines a Kahler metric
b2.

If we define b1 and b2 in terms of positive self-adjoint operators
A1 and A2, A1 = A2

2. In fact b is just Tr(AB), b1 is Tr(ALBL) and
b2 is essentially the square root of b1.
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The group of area preserving diffeomorphisms of the annulus
and its (co)adjoint orbit structure:

Consider the geometry of the group SDiff(A) of area (but not
necessarily orientation) preserving diffeomorphisms of the annu-
lus

A def
= {0 ≤ z ≤ 1} × {exp(2πiθ) | 0 ≤ θ ≤ 1} .

The Lie algebra g = sDiff(A) of SDiff(A) is the algebra of divergence-
free vector fields tangent to the boundary of A.

These vector fields are Hamiltonian with respect to the area
form dz ∧ dθ and their Hamiltonian functions x(z, θ) satisfy

∂x(z0, θ)/∂θ = 0 for z0 = 0, 1 .
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We will identify the Lie algebra g with the Poisson algebra p
of functions obeying the boundary conditions (2.1). The two
algebras are in fact not the same: p is a trivial extension of g, or
equivalently, g = p/{ constant functions}. However, it is easier
to work with p.

The adjoint representation of G = SDiff(A) on its Lie algebra g
is then the map Pg = F 7→ F ◦ g for g ∈ SDiff(A) and F ∈ g. This
may be seen as follows. Let gt be the flow of the Hamiltonian
vector field XH on A. Then

d

dt

∣∣∣∣
t=0

g∗tF = LXHF = 〈dF,XH〉 =
〈
Fzdz + Fθdθ , Hθ

∂

∂z
−Hz

∂

∂θ

〉
{F,H} ,

(0.13)

where g∗t denotes pull-back and 〈 , 〉 is the natural pairing
between 1-forms and tangent vectors on A.
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In particular, we see that the tangent vector to an adjoint orbit
O of G at the point F ∈ O is of the form {F,H}, H ∈ g.
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Note that the function

TrF =

∫
A
Fdzdθ

is invariant under the adjoint action. Thus we can define a
weakly nondegenerate invariant inner product on g by

〈F,H〉 = TrFH , F,G ∈ g . (0.14)

Proof of invariance: if g ∈ SDiff(A) we have for any F,G ∈ g

〈F ◦ g,G ◦ g〉 =

∫
A

(F ◦ g)(G ◦ g)dzdθ =

∫
A

((FG) ◦ g)dzdθ (0.15)

=

∫
A
FGdzdθ = 〈F,G〉 (0.16)

since g is area preserving.
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The infinitesimal version of this relation reads

〈{F,G}, H〉 = 〈F, {G,H}〉 for all F,G,H ∈ g.

This can be proved, as usual, by taking a derivative relative to
g at the identity.

Hence we may regard the space g as its own (algebraic) dual
and identify the co-adjoint action with the adjoint action.

The Lie–Poisson bracket on g is given by

{{f, g}}(F ) =
〈
F,

{
δf

δF
,
δg

δF

}〉
(0.17)

where δf
δF denotes the functional derivative. Restricted to an

adjoint orbit in g this corresponds to the orbit symplectic form.
An adjoint orbit of G = SDiff(A) carries a natural metric, which

is the analogue of the finite-dimensional “normal metric”.
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Lemma 0.2. Let x(z, θ) ∈ g = sDiff(A). Then, relative to the L2 inner
product 〈 , 〉 on L2(A), g := L2(A) may be decomposed orthogonally as

g = gx ⊕ gx

where the closures are taken in L2(A) and

gx = {y(z, θ) ∈ g | {x(z, θ), y(z, θ)} = 0} (0.18)

gx = {w(z, θ) ∈ g | w(z, θ) = {x(z, θ), u(z, θ)}, u ∈ g}. (0.19)

We can now define the normal metric 〈 , 〉N on adjoint orbits
of SDiff(A):

Definition 0.3. Let {x, u} and {x,w} be two tangent vectors to the orbit
O at x. Then 〈 , 〉N is given by

〈{x, u} , {x,w}〉N = 〈ux, wx〉 , (0.20)

where ux denotes the gx- component of u in the decomposition given by
Lemma 2.1.
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The single and double bracket equations on orbits of SDiff(A)
Now consider two natural partial differential equations asso-

ciated with SDiff(A): the Hamiltonian flow with respect to the
orbit symplectic form, and the gradient flow with respect to the
normal metric, of a linear functional restricted to an adjoint or-
bit of SDiff(A). These flows, as well as being interesting in their
own right, are central to our interpretation of the Toda lattice
flow.

Lemma 0.4. The Hamiltonian flow of

H(x(z, θ)) = −〈x(z, θ), z〉 = −
∫ ∫

x(z, θ)z dzd θ

under the Lie–Poisson bracket above is

xt(z, θ, t) = {x(z, θ, t), z} = −xθ . (0.21)
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Proof. Let f : g→ R be arbitrary. Since δH
δx = −z, we have〈

xt,
δf

δx

〉
= Df (x) · xt =

d

dt
f (x(z, θ, t)) (0.22)

= {{f,H}}(x) =

〈
x,

{
δf

δx
,−z

}〉
=

〈
{x, z}, δf

δx

〉
(0.23)

the last equality following from the invariance of 〈, 〉 under the adjoint action.
�

Now consider the gradient flow of −〈x(z, θ), z〉 with respect to
the normal metric.

Proposition 0.5. The gradient flow of H(x(z, θ)) = −〈x(z, θ), z〉 on an
adjoint orbit of SDiff(A) with respect to the normal metric is given by

xt(z, θ, t) = {x(z, θ, t), {x(z, θ, t), z}}
= xθzxθ − xzxθθ . (0.24)
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Proof. The proof parallels that in the finite-dimensional case (Bloch, Brockett,
and Ratiu [1992]). Let {x, δx} be a tangent vector to the orbit at x. Then by
definition of the gradient,

DH(x) · {x, δx} = 〈gradH(x), {x, δx}〉N ,
where · denotes the natural pairing between 1-forms and tangent vectors. Set
gradH(x) = {x, y}. Then we have

−〈{x, δx}, z〉 = 〈{x, y}, {x, δx}〉N
so that invariance of 〈 , 〉 under the adjoint action implies

〈{x, z}, δx〉 = 〈yx, δxx〉 = 〈yx, δx〉
for all δx ∈ g. Since {x, z} ∈ gx ⊂ gx, this relation implies yx = {x, z} and
hence gradH(x) = {x, {x, z}} as required. �

We now consider the equilibria for the partial differential equa-
tions 0.21 and 0.24. Clearly we have:
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Proposition 0.6. All functions x which depend on z only are equilibria
of 0.21 and 0.24.

We also have:

Proposition 0.7. All moments
∫
A x

k are conserved along the flow of 0.21
and 0.24.

Proof. Both 0.21 and 0.24are of the form xt = {x, y}. Thus we get

d

dt

∫
A
x(z, θ)kdzdt =

∫
A
kxk−1{x, y}dzdθ = 〈kxk−1, {x, y}〉 (0.25)

= k〈{xk−1, x}, y〉 = 0. (0.26)

�
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This is a “formal” assertion. Smooth solutions to these PDE’s
rarely exist for all time. Indeed, they are known to exhibit shocks
in certain cases (see Brockett and Bloch [1990], Bloch and Ko-
dama [1992]). For us, these formal equilibria were, nevertheless,
the guide to our infinite-dimensional convexity theorem.

Two functions f, g ∈ L2([0, 1])∩L∞([0, 1]) with the same moments
are equimeasurable, i.e. |{z | f (z) > y}| = |{z | g(z) > y}|, where
absolute value denotes Lebesgue measure on [0, 1]. Hence the
equilibria of the PDE’s discussed above are equimeasurable re-
arrangements of one another. But within the smooth category
there are very few of these. For example, if x(z) is monotone de-
creasing its only smooth rearrangement is 1− x(z). On the other
hand, if we demand only that x belong to L2([0, 1]) ∩ L∞([0, 1]), we
get an infinite number of equilibria – all the possible functions
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on [0, 1] with the moments Ip =
∫ 1

0 x
p dz.

Since these functions are natural formal equilibria of these
PDE’s, one might want to enlarge the function space under con-
sideration to include them. Important for convexity.
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We now take the continuum limit of the Toda lattice equations
by setting n = εz with 0 ≤ z ≤ 1, τ = εt, and letting ε tend to zero.
The functions an(t), bn(t) approach functions v(z, t), u(z, t) of two
variables, and the finite Toda lattice equations become

∂v

∂t
= v

∂u

∂z
,

∂u

∂t
= 2

∂v2

∂z
. (0.27)
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This is a quasilinear hyperbolic system, called the dispersionless
Toda equations. The naive continuum limits Ip of the constants of
motion TrLp of the finite Toda system give constants of motion
for the dispersionless Toda system. For example,

TrL2 =
∑

(a2
n + a2

n−1 + b2
n)

becomes

I2 =

∫ 1

0

(2v(z)2 + u(z)2)dz .

One can show that

Ip =

∫ 1

0

∫ 1

0

(u(z) + v(z)e2πiθ + v(z)e−2πiθ)pdzdθ .

We think of (u(z) + v(z)e2πiθ + v(z)e−2πiθ) as the continuous analog
of a tridiagonal matrix. The exponentials exp(±2πiθ) label the
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first super- and sub-diagonals. The variable z parametrizes the
diagonal direction.

Proposition 0.8. The system (0.27) has the bi-Hamiltonian structure

J0 =

(
0 ∂zv
v∂z 0

)
(0.28)

with corresponding Hamiltonian

H2 =
1

2

∫ 1

0

(u2(z) + 2v2(z))dz

and

J1 =

(
4v∂zv u∂zv
v∂zu v∂zv

)
(0.29)

with corresponding Hamiltonian

H1 =

∫ 1

0

u(z)dz
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where (u̇, v̇)T = J∇H(u, v).

The Hamiltonian structure J0 yields the Poisson bracket

{F,H}(u, v) =

∫ 1

0

(
δF

δu
,
δF

δv

)(
0 ∂zv
v∂z 0

)(
δH

δu
,
δH

δv

)T
dz

=

∫ 1

0

[
δF

δu

∂

∂z

(
v
δH

δv

)
+ v

δF

δv

∂

∂z

(
δH

δu

)]
dz . (0.30)

For H = H2 we get the dispersionless Toda equations.
We observe that the dispersionless Toda flow gradient is with

respect to the normal metric on a level set of integrals.
This can be seen to be true by considering the gradient flow

ẋ = {x, {x, z}}
in the case

x(z, θ) =
1

4π2
(u(z) + 2v(z)cos2πθ) . (0.31)



44

There is also a natural infinite-dimensional polytope: essen-
tially the convex hull of the measurable rearrangements of the
“diagonal” x – ie x depending on z only.

Also: a version of the Flaschka map.
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Symplectic Geometry of the Flaschka Map: we show that is is
a momentum map.

(Recent work with F. Gay-Balmaz and Tudor Ratiu).
Basic question: when is it possible to introduce global Darboux

coordinates on the coadjoint orbit of Lie group. This happens
for instance when G is an exponential solvable Lie group – as is
the case for the lower triangular matrices.

In particular we show that there is a remarkable equivalence
relation on coadjoint orbits, related to the so-called Pukanszky’s
condition. The associated quotient space turns out to be the
base space of a cotangent bundle diffeomorphic to the coadjoint
orbit. Such a realization is possible for solvable Lie algebras.
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Show how this situation occurs for the generalized Toda lat-
tice flows on semisimple Lie algebras, which generalize the Toda
lattice flow on Jacobi matrices. We analyze the situation both
for the lattice in its normal real form and compact real form, as
well as for dispersionless Toda.

Theorem 0.9. Let G be a connected and simply connected solvable Lie
group and O a connected and simply connected 2d-dimensional coadjoint
orbit of G. Then there is a diffeomorphism Φ : R2d → O such that Φ∗ωO
is constant and hence equal to the standard symplectic form on R2d.

– see Pukanszky and Bloch, Gay-Balmaz, Ratiu.
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Let g be a Lie algebra and µ0 ∈ g∗. Given a linear subspace
a ⊂ g, define

a⊥µ0 := {ξ ∈ g | 〈µ0, [ξ, η]〉 = 0, ∀ η ∈ a}.

Definition 0.10. Let G be a Lie group and µ0 ∈ g∗. A Lie subalgebra
h ⊂ g is called real polarization associated to µ0 if

(i) {Adg h | g ∈ Gµ0} = h;

(ii) h⊥µ0 = h.
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Lemma 0.11 (Pukanszky’s condition). Let G be a Lie group, µ0 ∈ g∗,
and h ⊂ g a real polarization associated to µ0. Then the following are
equivalent:

(i) µ0 + h◦ ⊆ Oµ0;

(ii) {Ad∗h µ0 | h ∈ H} = µ0 + h◦, for all h ∈ H;

(iii) {Ad∗h µ0 | h ∈ H} is closed in g∗.

If any of these equivalent conditions hold, we say that the real polarization
h associated to µ0 ∈ g∗ satsifies Pukanszky’s condition.
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Theorem 0.12 (Pukanszky’s conditions and momentum maps). Let G be
a Lie group, µ0 ∈ g∗, and denote by Oµ0 the coadjoint orbit of µ0. Let
h ⊂ g be a real polarization associated to µ0 and define H as above. Let
ν0 := i∗hµ0. Then the following are equivalent:

(i) h verifies Pukanszky’s conditions;

(ii) The reduced momentum map Jν0
R : (T ∗(G/H), ωcan −Bν0) → g∗ is onto

Oµ0;

(iii) The symplectic action of G on T ∗(G/H) is transitive;

(iv) Jν0
R : (T ∗(G/H), ωcan −Bν0) →

(
Oµ0, ωOµ0

)
is a symplectic diffeomor-

phism, where ωOµ0
is the minus orbit symplectic form, i.e.,

ωOµ0
(µ)(ad∗ξ µ, ad∗η µ) = −〈µ, [ξ, η]〉 , µ ∈ Oµ0, ξ, η ∈ g.
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For an arbitrary µ = Ad∗g µ0 ∈ Oµ0, define the Lie subalgebra

h(µ) = h
(
Ad∗g µ0

)
:= Adg−1 (h(µ0)) . (0.32)

It easy to check that h(µ) is a real polarization associated to µ
verifying Pukanszky’s condition µ + h(µ)◦ ⊂ Oµ.

Consider the relation ∼ on the coadjoint orbit Oµ0 defined, for
ν, γ ∈ Oµ0, by:

ν ∼ γ if and only if ν ∈ γ + h(γ)◦. (0.33)

This is an equivalence relation. The associated quotient space
is denoted Nµ0 := Oµ0/ ∼, with quotient map

πµ0 : Oµ0 → Nµ0, µ 7→ πµ0(µ) =: [µ]∼.
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The abstract Flaschka map: The abstract Flaschka map F :
Oµ0 → T ∗Nµ0 is defined by its restrictions F |[µ]∼ to the equivalence
classes [µ]∼ ⊂ Oµ0, that is, by the collection of maps

F |[µ]∼ : [µ]∼ → T ∗[µ]∼Nµ0. (0.34)

Given a section sµ0 : Nµ0 → Oµ0, the map F |[µ]∼ is, in turn, defined
by 〈

F |[µ]∼(sµ0([µ]∼) + σ), v[µ]∼

〉
:= 〈σ, ξ〉 , (0.35)

where ξ ∈ g is such that

v[µ]∼ = Tµ̄πµ0

(
ad∗ξ µ̄

)
, µ̄ := sµ0([µ]∼). (0.36)
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Theorem 0.13. Let µ0 ∈ g∗ and h a real polarization associated to µ0

verifying the Pukanszky condition. Define ν0 := i∗hµ0 ∈ h∗. Fix a suitable

one-form αν0 ∈ Ω1(G) and consider the abstract Flaschka transformation
F : Oµ0 → T ∗(G/H) associated to the section sµ0 := αν0 ◦ Σ−1. Then F
is a smooth diffeomorphism whose inverse is the reduced momentum map
associated to the symplectic reduction of T ∗G by H at ν0, that is,

F−1 = Jν0
R : T ∗(G/H)→ Oµ0.

Therefore, F is a symplectic diffeomorphism relative to the minus coad-
joint orbit symplectic form on Oµ0 and the magnetic form ωcan − Bν0 on
T ∗(G/H).
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Toda Case:

Proposition 0.14. The Flaschka map F : Oµ0 → T ∗Rr
+ is given by

F

(
r∑
i=1

cihi +

r∑
i=1

ai(eαi + e−αi)

)
=

(
a1, ..., ar,−

2

|α1|2
c1

a1
, ...,− 2

|αr|2
cr
ar

)
,

(0.37)
where |αi|2 := κ(αi, αi). The inverse is

F−1(u1, ..., ur, v1, ..., vr) = −
r∑
i=1

|αi|2uivi
2

hi +

r∑
i=1

ui(eαi + e−αi). (0.38)
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Flaschka Map for the diffeomorphism groups of the annulus:

Fv(2v cos(2πθ) + u) =

(
v(z),− 1

2πv(z)

∫ z

0

u(s)ds

)
.

This map F is, formally, a symplectic diffeomorphism between(
Oν0, ωOν0

)
and the weak symplectic vector space

(T ∗F([0, 1],R+) = F([0, 1],R+)×F([0, 1],R), Ωcan), as can also be shown
by a direct verification. This formula is the analogue of the for-
mulae for the finite dimensional normal real form and for the
compact real form.


