Overview Smooth G-

Characters in Categorical Representation Theory

David Ben-Zvi University of Texas at Austin

Symplectic Algebraic Geometry and Representation Theory, CIRM, Luminy. July 2012

Overview

Describe ongoing joint work with David Nadler (Berkeley) on categorical harmonic analysis, centered around the notion of characters of categorical representations.

- (with J. Francis) Integral Transforms and Drinfeld Centers in Derived Algebraic Geometry. JAMS 2010. Appendix, July 2012.
- The Character Theory of a Complex Group. arXiv:0904.1247.
- Beilinson-Bernstein Localization in Families. Preprint. (Summer)
- Traces, Fixed Points and Characters in Derived Algebraic Geometry. Preprint. (Fall)
- Geometry of Harish Chandra Characters. In preparation. (Spring 2013?)
- Elliptic Character Sheaves. In progress. (2014?)

Context

We will work in the context of J. Lurie's Higher Algebra but suppress ∞ -categorical technicalities throughout.

For example: category will stand for an enhanced derived category (pre-triangulated cocomplete dg category).

The collection of dg categories form a symmetric monoidal $\infty\text{-}\mathsf{category}.$

In particular we may speak of monoidal dg categories, module categories, etc.

For a scheme or stack X, QC(X) and D(X) denote the $(\infty$ -)categories of quasicoherent sheaves and D-modules on X, respectively.

G-categories

Fix a reductive algebraic group G over \mathbb{C} , B, N, H, W as usual.

Two types of G-actions on categories:

Algebraic G-category:

- $g \in G$ act coherently on M by functors, varying algebraically
- Comodule category *M* for "quasicoherent group coalgebra" QC(G) (under pullback for multiplication $\mu : G \times G \rightarrow G$)

Smooth G-category:

• Algebraic *G*-category, with trivialization of action of Lie algebra \widehat{g} or formal group \widehat{G} (i.e., algebraic *G*_{dR}-category)

• Comodule category for "smooth group coalgebra" $\mathcal{D}(G)$

G-categories

Fix a reductive algebraic group G over \mathbb{C} , B, N, H, W as usual.

Two types of G-actions on categories:

Algebraic G-category:

- $g \in G$ act coherently on M by functors, varying algebraically
- Comodule category M for "quasicoherent group coalgebra" QC(G) (under pullback for multiplication $\mu: G \times G \to G$)

Smooth G-category:

- Algebraic *G*-category, with trivialization of action of Lie algebra \hat{g} or formal group \hat{G} (i.e., algebraic *G*_{dR}-category)
- \bullet Comodule category for "smooth group coalgebra" $\mathcal{D}({\sf G})$

Examples of G-categories

• Fix a G-space (scheme or stack) $X \Longrightarrow$

QC(X) is an algebraic *G*-category,

 $\mathcal{D}(X)$ is a smooth *G*-category.

Main examples: $\mathcal{D}(G/B)$ and $\mathcal{D}_H(G/N)$, \mathcal{D} -modules on basic affine space locally constant on torus orbits – categorifications of principal series and universal principal series representations.

• Motivating example: The adjoint action of G on \mathfrak{g} gives rise to a smooth G-action on $U\mathfrak{g}-mod$

Examples of G-categories

• Fix a G-space (scheme or stack) $X \Longrightarrow$

QC(X) is an algebraic *G*-category,

 $\mathcal{D}(X)$ is a smooth *G*-category.

Main examples: $\mathcal{D}(G/B)$ and $\mathcal{D}_H(G/N)$, \mathcal{D} -modules on basic affine space locally constant on torus orbits – categorifications of principal series and universal principal series representations.

• Motivating example: The adjoint action of G on g gives rise to a smooth G-action on Ug-mod

Algebraic Hecke Categories

For algebraic *G*-categories, have complete control of elementary "categorical harmonic analysis" – intertwiners, centers, Morita equivalences, characters, spectral decomposition etc.

For example, results of [BZFN] together with

• Gaitsgory, Sheaves of categories on prestacks (2012) give the following:

Theorem: For any affine $H \subset G$, • There are equivalences of monoidal categories $QC(H \setminus G/H) \simeq End_{QC(G)}(QC(G/H)) \simeq End((-)^H)$ • The above algebraic Hecke category is Morita equivalent to QC(G)

— no difference between algebraic *G*-categories and their *H*-invariants (with Hecke action).

Algebraic Hecke Categories

For algebraic *G*-categories, have complete control of elementary "categorical harmonic analysis" – intertwiners, centers, Morita equivalences, characters, spectral decomposition etc.

For example, results of [BZFN] together with

• Gaitsgory, Sheaves of categories on prestacks (2012) give the following:

Theorem: For any affine $H \subset G$,

• There are equivalences of monoidal categories $QC(H \setminus G/H) \simeq End_{QC(G)}(QC(G/H)) \simeq End((-)^H)$ • The above algebraic Hecke category is Morita equivalent to

QC(G)

— no difference between algebraic G-categories and their H-invariants (with Hecke action).

Smooth Hecke Categories

Fewer general results hold for \mathcal{D} -modules, but still have (in equivariant or monodromic settings):

Theorem: $End_{\mathcal{D}(G)}(\mathcal{D}(G/B)) \simeq \mathcal{H} := \mathcal{D}(B \setminus G/B)$, the finite Hecke category, which is a 2-dualizable Calabi-Yau algebra in categories.

 ${\mathcal H}$ is a categorified form of ${\mathbb C}[W]$ — analog of finite-dimensional semisimple Frobenius algebra.

Corollary: \mathcal{H} - mod are smooth *G*-categories "appearing in principal series" — subcategory generated by module $\mathcal{D}(G/B)$.

Smooth Hecke Categories

Fewer general results hold for \mathcal{D} -modules, but still have (in equivariant or monodromic settings):

Theorem: $End_{\mathcal{D}(G)}(\mathcal{D}(G/B)) \simeq \mathcal{H} := \mathcal{D}(B \setminus G/B)$, the finite Hecke category, which is a 2-dualizable Calabi-Yau algebra in categories.

 \mathcal{H} is a categorified form of $\mathbb{C}[W]$ — analog of finite-dimensional semisimple Frobenius algebra.

Corollary: \mathcal{H} - mod are smooth *G*-categories "appearing in principal series" — subcategory generated by module $\mathcal{D}(G/B)$.

Beilinson-Bernstein Localization

The two types of smooth *G*-categories are related by Beilinson-Bernstein localization.

Localization and global sections functors (Δ, Γ) give adjunction between g-modules and \mathcal{D} -modules on flag varieties, linear over $\mathcal{D}(G)$.

To obtain an equivalence of categories we

- fix an infinitesimal character $[\lambda] \in \mathfrak{h}^*/W$;
- choose lift to weight $\lambda \in \mathfrak{h}^*$;
- modify construction at singular λ .

Beilinson-Bernstein in Families

Consider derived version in families:

$$\Delta: U\mathfrak{g}\operatorname{\mathsf{-mod}} \operatorname{\mathsf{-mod}} \operatorname{\mathcal{P}}_H(G/N): \Gamma$$

two-sided adjoints, and Δ conservative \longrightarrow can readily apply Barr-Beck-Lurie theorem:

Theorem:
$$Ug - mod \simeq \mathcal{D}_H(G/N)_{\mathcal{W}} \simeq \mathcal{D}_H(G/N)^{\mathcal{W}}$$
,

modules (or comodules) over the (Frobenius) algebra in the Hecke category

$$\mathcal{W} = \mathcal{D}_{N \setminus G/N} \in End_{\mathcal{D}(G)}(\mathcal{D}_H(G/N))$$

Weyl sheaf $\mathcal{W}:$ analog of symmetrizing idempotent in Weyl group,

 $U\mathfrak{g}-\mathsf{mod} = "Weyl (co)invariants" in <math>\mathcal{D}_H(G/N)$.

Beilinson-Bernstein in Families

Consider derived version in families:

$$\Delta: U\mathfrak{g}\operatorname{\mathsf{-mod}}\nolimits \operatorname{\mathsf{\leftarrow}}\nolimits \mathcal{D}_H(G/N): \Gamma$$

two-sided adjoints, and Δ conservative \longrightarrow can readily apply Barr-Beck-Lurie theorem:

Theorem:
$$Ug - mod \simeq \mathcal{D}_H(G/N)_{\mathcal{W}} \simeq \mathcal{D}_H(G/N)^{\mathcal{W}}$$
,

$$\mathcal{W} = \mathcal{D}_{N \setminus G/N} \in End_{\mathcal{D}(G)}(\mathcal{D}_H(G/N))$$

Weyl sheaf \mathcal{W} : analog of symmetrizing idempotent in Weyl group,

 $U\mathfrak{g}-\mathsf{mod} = "Weyl (co)invariants" in <math>\mathcal{D}_H(G/N)$.

Dimensions

Context: \mathcal{A} symmetric monoidal (higher) category, $A \in \mathcal{A}$ dualizable object

Dimension of A: dim $(A) \in End(1_A)$ defined by

Examples:

- Dimension/Euler characteristic of a vector space/complex
- Hochschild homology of an algebra or category

Dimensions

Context: \mathcal{A} symmetric monoidal (higher) category, $A \in \mathcal{A}$ dualizable object

Dimension of A: dim $(A) \in End(1_A)$ defined by

Examples:

- Dimension/Euler characteristic of a vector space/complex
- Hochschild homology of an algebra or category

Functoriality of Dimension

 \mathcal{A} a 2-category $\sim \sim \sim$ notion of adjunctions between morphisms

 $\sim \sim \sim$ notion of continuous morphism (has right adjoint) Construction: Dim is functorial for continuous morphisms of dualizable objects: $\dim(A) \xrightarrow{\dim(\pi_1)} \dim(B)$

Functoriality of Dimension

 \mathcal{A} a 2-category \longrightarrow notion of adjunctions between morphisms

 $\sim \sim \sim$ notion of continuous morphism (has right adjoint) Construction: Dim is functorial for continuous morphisms of dualizable objects: $\dim(A) \xrightarrow{\dim(\pi_1)} \dim(B)$

Corollary: A dualizable object of A (continuous $1_{\mathcal{A}} \xrightarrow{V} A$) has a character dim(V) \in dim(A), satisfying "abstract GRR"

Algebraic Examples

• \mathcal{A} =Morita theory of algebras, $A = \mathbb{C}G$ finite group algebra. dim $(A) = \mathbb{C}[\frac{G}{G}]$ class functions.

 $V: 1_A \to A$: representation of $G \longrightarrow \dim(V) \in \mathbb{C}[\frac{G}{G}]$: character of representation.

A=Categories, A = QC(X) or D(X) sheaves on a scheme (or stack).
dim(A)=Dolbeault/de Rham cohomology of the scheme (functions/de Rham cohomology of loop stack)

V sheaf \longrightarrow dim(V) Chern character.

Algebraic Examples

• \mathcal{A} =Morita theory of algebras, $A = \mathbb{C}G$ finite group algebra. dim $(A) = \mathbb{C}[\frac{G}{G}]$ class functions.

 $V : 1_A \to A$: representation of $G \longrightarrow \dim(V) \in \mathbb{C}[\frac{G}{G}]$: character of representation.

• \mathcal{A} =Categories, A = QC(X) or $\mathcal{D}(X)$ sheaves on a scheme (or stack). dim(A)=Dolbeault/de Rham cohomology of the scheme (functions/de Rham cohomology of loop stack)

V sheaf \longrightarrow dim(V) Chern character.

Geometric Examples

• \mathcal{A} =(Derived) Varieties/stacks with correspondences: dim(X) = $\mathcal{L}X$ loop space ($\Delta_X \cap \Delta_X = X \times_{X \times X} X$.)

$$\pi: X \to Y \iff \dim(\pi) = \mathcal{L}\pi: \mathcal{L}X \to \mathcal{L}Y.$$

• X a G-space, $\pi: X/G \rightarrow BG$.

- dimension given by fixed point loci classified over adjoint quotient.

Geometric Examples

• \mathcal{A} =(Derived) Varieties/stacks with correspondences: dim(X) = $\mathcal{L}X$ loop space ($\Delta_X \cap \Delta_X = X \times_{X \times X} X$.)

$$\pi: X \to Y \iff \dim(\pi) = \mathcal{L}\pi: \mathcal{L}X \to \mathcal{L}Y.$$

• X a G-space,
$$\pi: X/G \rightarrow BG$$
.

- dimension given by fixed point loci classified over adjoint quotient.

Trace and Fixed-Point Formulas

Formal consequence: in any theory of sheaves (assignment stack \mapsto category satisfying base change and proper adjunction) pushforward on Hochschild homology is given by integration on loop maps, i.e., integration on fixed points in equivariant setting

Corollary:

• <u>Grothendieck-Riemann-Roch</u> in Hochschild homology for proper maps of geometric stacks

• <u>Lefschetz trace formula</u> for *D*-modules on proper Deligne-Mumford (derived) stacks

• Atiyah-Bott fixed point theorem for quasicoherent sheaves on proper Deligne-Mumford (derived) stacks (conjecture of Frenkel-Ngô)

Trace and Fixed-Point Formulas

Formal consequence: in any theory of sheaves (assignment stack \mapsto category satisfying base change and proper adjunction) pushforward on Hochschild homology is given by integration on loop maps, i.e., integration on fixed points in equivariant setting

Corollary:

- <u>Grothendieck-Riemann-Roch</u> in Hochschild homology for proper maps of geometric stacks
- <u>Lefschetz trace formula</u> for \mathcal{D} -modules on proper Deligne-Mumford (derived) stacks
- Atiyah-Bott fixed point theorem for quasicoherent sheaves on proper Deligne-Mumford (derived) stacks (conjecture of Frenkel-Ngô)

Character Formulas

<u>Frobenius character formula</u>: Character of permutation representation $\mathbb{C}[X]$ is $Tr(g) = |X^g|$: pushforward of constant function under map $\mathcal{L}(X/G) \to \frac{G}{G}$.

X = G/K: character of induced representation $\mathbb{C}[G/K]$ given by pushforward along

Flag variety $X = G/B \rightsquigarrow$ Weyl character formula à la Atiyah-Bott:

 $\frac{B}{B} \simeq \frac{\widetilde{G}}{G} \xrightarrow{\mathcal{L}\pi = Grothendieck - Springer} \Rightarrow \frac{G}{G}$

Character Formulas

<u>Frobenius character formula</u>: Character of permutation representation $\mathbb{C}[X]$ is $Tr(g) = |X^g|$: pushforward of constant function under map $\mathcal{L}(X/G) \to \frac{G}{G}$.

X = G/K: character of induced representation $\mathbb{C}[G/K]$ given by pushforward along

Flag variety $X = G/B \rightsquigarrow$ Weyl character formula à la Atiyah-Bott:

 $\frac{B}{B} \simeq \frac{\widetilde{G}}{G} \xrightarrow{\mathcal{L}\pi = Grothendieck - Springer} \Rightarrow \frac{G}{G}$

Character Formulas

<u>Frobenius character formula</u>: Character of permutation representation $\mathbb{C}[X]$ is $Tr(g) = |X^g|$: pushforward of constant function under map $\mathcal{L}(X/G) \to \frac{G}{G}$.

X = G/K: character of induced representation $\mathbb{C}[G/K]$ given by pushforward along

Flag variety $X = G/B \rightsquigarrow$ Weyl character formula à la Atiyah-Bott:

$$\frac{B}{B} \simeq \frac{\widetilde{G}}{G} \xrightarrow{\qquad \mathcal{L}\pi = \textit{Grothendieck} - \textit{Springer}} \xrightarrow{\qquad \mathcal{G}} \frac{G}{G}$$

Characters of algebraic G-categories

Arguments apply unmodified to sheaves of categories and categorical representations:

• A = QC(G) or $QC(H \setminus G/H)$ quasicoherent group or Hecke algebra (monoidal category)

Theorem: dim(A) = $QC(\frac{G}{G})$

V algebraic *G*-category $\longrightarrow \dim(V) \in QC(\frac{G}{G})$: algebraic character sheaf.

Character of QC(X) for a *G*-space calculated by fixed points map $\mathcal{L}\pi: \mathcal{L}X/G \to \frac{G}{G}$.

Characters of smooth G-categories

• $A = \mathcal{D}(G)$: Natural map dim $(A) \to \mathcal{D}(\frac{G}{G})$. Calculate characters by fixed points:

Corollary: The character of $\mathcal{D}(G/B)$ is $\mathcal{L}\pi_*\mathcal{O}_{\frac{\widetilde{G}}{G}} \in \mathcal{D}(\frac{G}{G})$, the Grothendieck-Springer — i.e., [Hotta-Kashiwara] the Harish Chandra system HC on G.

• Characters are microlocal: for a *G*-space can calculate dim $\mathcal{D}(X) \in \mathcal{D}(\frac{G}{G})$ near 1_G from moment map $\mu : T^*X \to \mathfrak{g}^*$.

• Characters for Hecke category $\mathcal{H} = \mathcal{D}(B \setminus G/B)$:

Theorem: dim(\mathcal{H}) is the category of Lusztig character sheaves in $\mathcal{D}(\frac{G}{G})$ — i.e., differential equations on $\frac{G}{G}$ with same singularities as HC.

Characters of smooth G-categories

• $A = \mathcal{D}(G)$: Natural map dim $(A) \to \mathcal{D}(\frac{G}{G})$. Calculate characters by fixed points:

Corollary: The character of $\mathcal{D}(G/B)$ is $\mathcal{L}\pi_*\mathcal{O}_{\frac{\widetilde{G}}{G}} \in \mathcal{D}(\frac{G}{G})$, the Grothendieck-Springer — i.e., [Hotta-Kashiwara] the Harish Chandra system HC on G.

• Characters are microlocal: for a *G*-space can calculate dim $\mathcal{D}(X) \in \mathcal{D}(\frac{G}{G})$ near 1_G from moment map $\mu : T^*X \to \mathfrak{g}^*$.

• Characters for Hecke category $\mathcal{H} = \mathcal{D}(B \setminus G/B)$:

Theorem: dim(\mathcal{H}) is the category of Lusztig character sheaves in $\mathcal{D}(\frac{G}{G})$ — i.e., differential equations on $\frac{G}{G}$ with same singularities as *HC*.

Characters of smooth G-categories

• $A = \mathcal{D}(G)$: Natural map dim $(A) \to \mathcal{D}(\frac{G}{G})$. Calculate characters by fixed points:

Corollary: The character of $\mathcal{D}(G/B)$ is $\mathcal{L}\pi_*\mathcal{O}_{\frac{\widetilde{G}}{G}} \in \mathcal{D}(\frac{G}{G})$, the Grothendieck-Springer — i.e., [Hotta-Kashiwara] the Harish Chandra system HC on G.

• Characters are microlocal: for a *G*-space can calculate dim $\mathcal{D}(X) \in \mathcal{D}(\frac{G}{G})$ near 1_G from moment map $\mu : T^*X \to \mathfrak{g}^*$.

• Characters for Hecke category $\mathcal{H} = \mathcal{D}(B \setminus G/B)$:

Theorem: dim(\mathcal{H}) is the category of Lusztig character sheaves in $\mathcal{D}(\frac{G}{G})$ — i.e., differential equations on $\frac{G}{G}$ with same singularities as HC.

Harish Chandra Theory of Characters

Harish Chandra introduced a character for admissible representations M of reductive groups:

• The character Θ_M exists as a distribution on $\frac{G}{G}$

• For *M* with infinitesimal character $[\lambda]$, Θ_M solves the Harish Chandra system — i.e., defines a morphism of \mathcal{D} -modules on $\frac{G}{G}$,

$$HC_{[\lambda]} := \mathcal{D}/\langle z - \lambda(z) \rangle_{z \in Z(U\mathfrak{g})} \xrightarrow{\Theta_M} C^{-\infty}$$

• Properties of HC system imply Θ_M analytic on G^{rss} , extends to $L^1(G)$. Beautiful algebraic and geometric formulas for Θ_M suggest it is innately algebraic object.

Harish Chandra Theory of Characters

Harish Chandra introduced a character for admissible representations M of reductive groups:

- The character Θ_M exists as a distribution on $\frac{G}{G}$
- For *M* with infinitesimal character $[\lambda]$, Θ_M solves the Harish Chandra system i.e., defines a morphism of \mathcal{D} -modules on $\frac{G}{G}$,

$$HC_{[\lambda]} := \mathcal{D}/\langle z - \lambda(z) \rangle_{z \in Z(U\mathfrak{g})} \xrightarrow{\Theta_M} C^{-\infty}$$

• Properties of HC system imply Θ_M analytic on G^{rss} , extends to $L^1(G)$. Beautiful algebraic and geometric formulas for Θ_M suggest it is innately algebraic object.

Harish Chandra Theory of Characters

Harish Chandra introduced a character for admissible representations M of reductive groups:

- The character Θ_M exists as a distribution on $\frac{G}{G}$
- For *M* with infinitesimal character $[\lambda]$, Θ_M solves the Harish Chandra system i.e., defines a morphism of \mathcal{D} -modules on $\frac{G}{G}$,

$$HC_{[\lambda]} := \mathcal{D}/\langle z - \lambda(z) \rangle_{z \in Z(U\mathfrak{g})} \xrightarrow{\Theta_M} C^{-\infty}$$

• Properties of *HC* system imply Θ_M analytic on G^{rss} , extends to $L^1(G)$. Beautiful algebraic and geometric formulas for Θ_M suggest it is innately algebraic object.

Representations as Intertwiners

Admissible representations of real group $G_{\mathbb{R}}$ \longrightarrow Harish Chandra (\mathfrak{g}, K) modules for $K \subset G$ symmetric subgroup

 \longrightarrow [Beilinson-Bernstein] $\mathcal{D}_{\mathcal{K}}(G/B)$: *K*-equivariant (twisted) \mathcal{D} -modules on G/B, i.e., \mathcal{D} -modules on

 $K \setminus G/B \simeq G \setminus (G/B \times G/K)$

Suggests an interpretation as intertwiners for smooth G-categories:

Proposition: $\mathcal{D}(K \setminus G/B) \simeq Hom_G(\mathcal{D}(G/B), \mathcal{D}(G/K))$

Harish Chandra modules are intertwiners between principal series and symmetric space representations.

Representations as Intertwiners

Admissible representations of real group $G_{\mathbb{R}}$

 \longrightarrow Harish Chandra (\mathfrak{g}, K) modules for $K \subset G$ symmetric subgroup

 $\sim \sim \sim$ [Beilinson-Bernstein] $\mathcal{D}_{\mathcal{K}}(G/B)$: *K*-equivariant (twisted) \mathcal{D} -modules on G/B, i.e., \mathcal{D} -modules on

 $K \backslash G/B \simeq G \backslash (G/B \times G/K)$

Suggests an interpretation as intertwiners for smooth G-categories:

Proposition: $\mathcal{D}(K \setminus G/B) \simeq Hom_G(\mathcal{D}(G/B), \mathcal{D}(G/K))$

Harish Chandra modules are intertwiners between principal series and symmetric space representations.

Representations as Intertwiners

Admissible representations of real group $G_{\mathbb{R}}$

 \longrightarrow Harish Chandra (\mathfrak{g}, K) modules for $K \subset G$ symmetric subgroup

 $\sim \sim \sim$ [Beilinson-Bernstein] $\mathcal{D}_{\mathcal{K}}(G/B)$: *K*-equivariant (twisted) \mathcal{D} -modules on G/B, i.e., \mathcal{D} -modules on

$$K \setminus G/B \simeq G \setminus (G/B \times G/K)$$

Suggests an interpretation as intertwiners for smooth G-categories:

Proposition: $\mathcal{D}(K \setminus G/B) \simeq Hom_G(\mathcal{D}(G/B), \mathcal{D}(G/K))$

Harish Chandra modules are intertwiners between principal series and symmetric space representations.

Harish Chandra Characters via Functoriality

Now apply functoriality of dim:

 $M \text{ a } (\mathfrak{g}, \mathcal{K}) \text{-module} \longrightarrow M \text{ defines a } G \text{-map}$ $\mathcal{D}(G/B) \xrightarrow{M} \mathcal{D}(G/\mathcal{K}) \longrightarrow \mathcalD(G/\mathcal{K}) \longrightarrow \mathcal$

Character is a solution of Harish Chandra system valued in "K-Springer sheaf"

$$\Xi_{K} = (p_{\frac{K}{K} \to \frac{G}{G}})_{*}\mathcal{O}_{\frac{K}{K}}$$

Harish Chandra Characters via Functoriality

Now apply functoriality of dim:

 $M \mathrel{\texttt{a}} (\mathfrak{g}, \mathcal{K}) \text{-module} \longrightarrow M \text{ defines a } G \text{-map}$ $\mathcal{D}(G/B) \xrightarrow{M} \mathcal{D}(G/\mathcal{K}) \longrightarrow \mathcalD(G/\mathcal{K}) \longrightarrow \mathcalD(G/\mathcal$

Character is a solution of Harish Chandra system valued in "K-Springer sheaf"

$$\Xi_{K} = (p_{\frac{K}{K} \to \frac{G}{G}})_{*}\mathcal{O}_{\frac{K}{K}}$$

Harish Chandra Characters via Functoriality

Now apply functoriality of dim:

 $M \mathrel{\texttt{a}} (\mathfrak{g}, \mathcal{K}) \text{-module} \longrightarrow M \text{ defines a } G \text{-map}$ $\mathcal{D}(G/B) \xrightarrow{M} \mathcal{D}(G/\mathcal{K}) \longrightarrow \mathcal{D}(G/\mathcal{K})$

Character is a solution of Harish Chandra system valued in "K-Springer sheaf"

$$\Xi_{K} = (p_{\frac{K}{K} \to \frac{G}{G}})_{*}\mathcal{O}_{\frac{K}{K}}$$

Construction applies to any subgroup K (not necessarily symmetric).

On the regular semisimple locus of K, Θ_M is a section of $\mathcal{O}_{K^{rss}}$ solving pullback of HC system. — e.g., for K = G recover Weyl character.

Gives refined information and algebraic interpretation of character over entire group.

- <u>"Weyl-Atiyah-Bott" character formula</u>: comes from trace/fixed point formalism which described the map dim.
- <u>"Kirillov-Rossman" character formula</u>: comes from compatibility of characters and microlocalization.

Construction applies to any subgroup K (not necessarily symmetric).

On the regular semisimple locus of K, Θ_M is a section of $\mathcal{O}_{K^{rss}}$ solving pullback of HC system. — e.g., for K = G recover Weyl character.

Gives refined information and algebraic interpretation of character over entire group.

- <u>"Weyl-Atiyah-Bott" character formula</u>: comes from trace/fixed point formalism which described the map dim.
- <u>"Kirillov-Rossman" character formula</u>: comes from compatibility of characters and microlocalization.

Construction applies to any subgroup K (not necessarily symmetric).

On the regular semisimple locus of K, Θ_M is a section of $\mathcal{O}_{K^{rss}}$ solving pullback of HC system. — e.g., for K = G recover Weyl character.

Gives refined information and algebraic interpretation of character over entire group.

- <u>"Weyl-Atiyah-Bott" character formula</u>: comes from trace/fixed point formalism which described the map dim.
- <u>"Kirillov-Rossman" character formula</u>: comes from compatibility of characters and microlocalization.

Construction applies to any subgroup K (not necessarily symmetric).

On the regular semisimple locus of K, Θ_M is a section of $\mathcal{O}_{K^{rss}}$ solving pullback of HC system. — e.g., for K = G recover Weyl character.

Gives refined information and algebraic interpretation of character over entire group.

- <u>"Weyl-Atiyah-Bott" character formula</u>: comes from trace/fixed point formalism which described the map dim.
- <u>"Kirillov-Rossman" character formula</u>: comes from compatibility of characters and microlocalization.

Traces of Hecke Functors

Goal: Develop theory of characters for smooth LG-categories, in particular for modules for spherical and affine Hecke categories

$$\mathcal{H}^{sph} = \mathcal{D}(\mathcal{G}(\mathcal{O}) \backslash L\mathcal{G}/\mathcal{G}(\mathcal{O})) \xrightarrow{Satake} \mathcal{QC}(B\mathcal{G}^L)$$

$$\mathcal{H}^{aff} = \mathcal{D}(I \backslash LG/I) \xrightarrow{Bezrukavnikov} QC^!(St^L/G^L)$$

Motivation: Geometric Arthur-Selberg trace formula

C algebraic curve with fixed ramification data, describe character of category $\mathcal{D}(Bun_G(C))$ — module for \mathcal{H}^{sph} , \mathcal{H}^{aff} , $\mathcal{D}(LG)$ at places with trivial, tame or full level structure.

Traces of Hecke Functors

Goal: Develop theory of characters for smooth LG-categories, in particular for modules for spherical and affine Hecke categories

$$\mathcal{H}^{sph} = \mathcal{D}(\mathcal{G}(\mathcal{O}) \backslash L\mathcal{G}/\mathcal{G}(\mathcal{O})) \xrightarrow{Satake} \mathcal{QC}(B\mathcal{G}^L)$$

$$\mathcal{H}^{aff} = \mathcal{D}(I \backslash LG/I) \xrightarrow{Bezrukavnikov} QC^!(St^L/G^L)$$

Motivation: Geometric Arthur-Selberg trace formula

C algebraic curve with fixed ramification data, describe character of category $\mathcal{D}(Bun_G(C))$ — module for \mathcal{H}^{sph} , \mathcal{H}^{aff} , $\mathcal{D}(LG)$ at places with trivial, tame or full level structure.

What are character sheaves on *LG*? Hard to define directly as \mathcal{D} -modules on $\frac{LG}{LG}$. Two proposals:

 \bullet Algebraic definition: Consider $\text{dim}(\mathcal{H}^{\textit{aff}}),$ characters of affine Hecke modules.

• Topological Field Theory definition: q-deform $\frac{LG}{LG}$ to $Bun_G(E_q)$, G-bundles on (Tate) elliptic curve $E_q = \mathbb{C}^*/q^{\mathbb{Z}}$

 \longrightarrow Consider $\mathcal{D}_{nil}(Bun_G(E_q))$, \mathcal{D} -modules with nilpotent singular support.

Locally constant in q, can describe monadically in limit $q \rightarrow 0$.

Claim (proof in progress): $\dim(\mathcal{H}^{aff}) \simeq \mathcal{D}_{nil}(Bun_G(E_q))$ elliptic character sheaves

Langlands duality for Hecke categories ~~~~ Corollary: topological geometric Langlands for elliptic curves.

What are character sheaves on *LG*? Hard to define directly as \mathcal{D} -modules on $\frac{LG}{LG}$. Two proposals:

• Algebraic definition: Consider dim(\mathcal{H}^{aff}), characters of affine Hecke modules.

• Topological Field Theory definition: q-deform $\frac{LG}{LG}$ to $Bun_G(E_q)$, G-bundles on (Tate) elliptic curve $E_q = \mathbb{C}^*/q^{\mathbb{Z}}$

 \sim Consider $\mathcal{D}_{nil}(Bun_G(E_q))$, \mathcal{D} -modules with nilpotent singular support.

Locally constant in q, can describe monadically in limit $q \rightarrow 0$.

Claim (proof in progress): $\dim(\mathcal{H}^{aff}) \simeq \mathcal{D}_{nil}(Bun_G(E_q))$ elliptic character sheaves

Langlands duality for Hecke categories ~~~~ Corollary: topological geometric Langlands for elliptic curves.

What are character sheaves on *LG*? Hard to define directly as \mathcal{D} -modules on $\frac{LG}{LG}$. Two proposals:

• Algebraic definition: Consider dim(\mathcal{H}^{aff}), characters of affine Hecke modules.

• Topological Field Theory definition: q-deform $\frac{LG}{LG}$ to $Bun_G(E_q)$, G-bundles on (Tate) elliptic curve $E_q = \mathbb{C}^*/q^{\mathbb{Z}}$

 \sim Consider $\mathcal{D}_{nil}(Bun_G(E_q))$, \mathcal{D} -modules with nilpotent singular support.

Locally constant in q, can describe monadically in limit $q \rightarrow 0$.

Claim (proof in progress): elliptic character sheaves

$$\mathsf{dim}(\mathcal{H}^{\mathsf{aff}}) \simeq \mathcal{D}_{\mathit{nil}}(\mathit{Bun}_{\mathsf{G}}(\mathit{E}_q))$$

Langlands duality for Hecke categories ~~~~ Corollary: topological geometric Langlands for elliptic curves.

What are character sheaves on *LG*? Hard to define directly as \mathcal{D} -modules on $\frac{LG}{LG}$. Two proposals:

• Algebraic definition: Consider dim(\mathcal{H}^{aff}), characters of affine Hecke modules.

• Topological Field Theory definition: q-deform $\frac{LG}{LG}$ to $Bun_G(E_q)$, G-bundles on (Tate) elliptic curve $E_q = \mathbb{C}^*/q^{\mathbb{Z}}$

 \sim Consider $\mathcal{D}_{nil}(Bun_G(E_q))$, \mathcal{D} -modules with nilpotent singular support.

Locally constant in q, can describe monadically in limit $q \rightarrow 0$.

Claim (proof in progress): elliptic character sheaves

$$\mathsf{dim}(\mathcal{H}^{\mathsf{aff}}) \simeq \mathcal{D}_{\mathsf{nil}}(\mathsf{Bun}_{\mathsf{G}}(\mathsf{E}_q))$$

Langlands duality for Hecke categories ~~~~ Corollary: topological geometric Langlands for elliptic curves.