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Overview

Describe ongoing joint work with David Nadler (Berkeley) on
categorical harmonic analysis, centered around the notion of
characters of categorical representations.

• (with J. Francis) Integral Transforms and Drinfeld Centers in
Derived Algebraic Geometry. JAMS 2010. Appendix, July
2012.

• The Character Theory of a Complex Group. arXiv:0904.1247.

• Beilinson-Bernstein Localization in Families. Preprint.
(Summer)

• Traces, Fixed Points and Characters in Derived Algebraic
Geometry. Preprint. (Fall)

• Geometry of Harish Chandra Characters. In preparation.
(Spring 2013?)

• Elliptic Character Sheaves. In progress. (2014?)
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Context

We will work in the context of J. Lurie’s Higher Algebra but
suppress ∞-categorical technicalities throughout.

For example: category will stand for an enhanced derived category
(pre-triangulated cocomplete dg category).

The collection of dg categories form a symmetric monoidal
∞-category.

In particular we may speak of monoidal dg categories, module
categories, etc.

For a scheme or stack X , QC (X ) and D(X ) denote the
(∞-)categories of quasicoherent sheaves and D-modules on X ,
respectively.
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G -categories

Fix a reductive algebraic group G over C, B,N,H,W as usual.

Two types of G -actions on categories:

Algebraic G-category:
• g ∈ G act coherently on M by functors, varying algebraically
• Comodule category M for “quasicoherent group coalgebra”
QC (G ) (under pullback for multiplication µ : G × G → G )

Smooth G-category:
• Algebraic G -category, with trivialization of action of Lie algebra
g or formal group Ĝ (i.e., algebraic GdR -category)
• Comodule category for “smooth group coalgebra” D(G )
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Examples of G -categories

• Fix a G -space (scheme or stack) X =⇒

QC (X ) is an algebraic G -category,

D(X ) is a smooth G -category.

Main examples: D(G/B) and DH(G/N), D-modules on basic
affine space locally constant on torus orbits – categorifications of
principal series and universal principal series representations.

• Motivating example: The adjoint action of G on g gives rise to a
smooth G -action on Ug−mod
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Algebraic Hecke Categories

For algebraic G -categories, have complete control of elementary
“categorical harmonic analysis” – intertwiners, centers, Morita
equivalences, characters, spectral decomposition etc.

For example, results of [BZFN] together with
• Gaitsgory, Sheaves of categories on prestacks (2012)
give the following:

Theorem: For any affine H ⊂ G ,
• There are equivalences of monoidal categories
QC (H\G/H) ' EndQC(G)(QC (G/H)) ' End((−)H)
• The above algebraic Hecke category is Morita equivalent to
QC (G )

— no difference between algebraic G -categories and their
H-invariants (with Hecke action).
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Smooth Hecke Categories

Fewer general results hold for D-modules, but still have (in
equivariant or monodromic settings):

Theorem: EndD(G)(D(G/B)) ' H := D(B\G/B), the finite Hecke
category, which is a 2-dualizable Calabi-Yau algebra in categories.

H is a categorified form of C[W ] — analog of finite-dimensional
semisimple Frobenius algebra.

Corollary: H−mod are smooth G -categories “appearing in
principal series” — subcategory generated by module D(G/B).
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Beilinson-Bernstein Localization

The two types of smooth G -categories are related by
Beilinson-Bernstein localization.

Localization and global sections functors (∆, Γ) give adjunction
between g-modules and D-modules on flag varieties, linear over
D(G ).

To obtain an equivalence of categories we
• fix an infinitesimal character [λ] ∈ h∗/W ;
• choose lift to weight λ ∈ h∗;
• modify construction at singular λ.
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Beilinson-Bernstein in Families

Consider derived version in families:

∆ : Ug−mod // DH(G/N) : Γoo

two-sided adjoints, and ∆ conservative // can readily apply
Barr-Beck-Lurie theorem:

Theorem: Ug−mod ' DH(G/N)W ' DH(G/N)W ,

modules (or comodules) over the (Frobenius) algebra in the Hecke
category

W = DN\G/N ∈ EndD(G)(DH(G/N))

Weyl sheaf W: analog of symmetrizing idempotent in Weyl group,

Ug−mod = ”Weyl (co)invariants” in DH(G/N).



Overview Smooth G-categories Localization Traces Harish Chandra Characters Elliptic Character Sheaves

Beilinson-Bernstein in Families

Consider derived version in families:

∆ : Ug−mod // DH(G/N) : Γoo

two-sided adjoints, and ∆ conservative // can readily apply
Barr-Beck-Lurie theorem:

Theorem: Ug−mod ' DH(G/N)W ' DH(G/N)W ,

modules (or comodules) over the (Frobenius) algebra in the Hecke
category

W = DN\G/N ∈ EndD(G)(DH(G/N))

Weyl sheaf W: analog of symmetrizing idempotent in Weyl group,

Ug−mod = ”Weyl (co)invariants” in DH(G/N).



Overview Smooth G-categories Localization Traces Harish Chandra Characters Elliptic Character Sheaves

Dimensions

Context: A symmetric monoidal (higher) category, A ∈ A
dualizable object

Dimension of A: dim(A) ∈ End(1A) defined by

1A
unit=IdA //

dim(A)=TrA(IdA)

End(A)
' // A⊗ A∨

counit=TrA // 1A

Examples:

• Dimension/Euler characteristic of a vector space/complex
• Hochschild homology of an algebra or category
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Functoriality of Dimension

A a 2-category // notion of adjunctions between morphisms

A
π!

// B
π!
oo

// notion of continuous morphism (has right adjoint)

Construction: Dim is functorial for continuous morphisms of

dualizable objects: dim(A)
dim(π!) // dim(B)

Corollary: A dualizable object of A (continuous 1A
V // A ) has a

character dim(V ) ∈ dim(A), satisfying “abstract GRR”

1A

dim(π!V ) ''

dim(V ) // dim(A)

dim(π!)
��

dim(B)
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Algebraic Examples

• A=Morita theory of algebras, A = CG finite group algebra.
dim(A) = C[ G

G ] class functions.

V : 1A → A: representation of G // dim(V ) ∈ C[ G
G ]:

character of representation.

• A=Categories, A = QC (X ) or D(X ) sheaves on a scheme (or
stack).
dim(A)=Dolbeault/de Rham cohomology of the scheme
(functions/de Rham cohomology of loop stack)

V sheaf // dim(V ) Chern character.
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Geometric Examples

• A=(Derived) Varieties/stacks with correspondences:
dim(X ) = LX loop space (∆X ∩∆X = X×X×X X .)

π : X → Y // dim(π) = Lπ : LX → LY .

• X a G -space, π : X/G → BG .

L(X/G )

Lπ

��

' // {g ∈ G , x ∈ X g}
G

pG

��

L(BG )
' // G

G

– dimension given by fixed point loci classified over adjoint
quotient.
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Trace and Fixed-Point Formulas

Formal consequence: in any theory of sheaves (assignment stack
7→ category satisfying base change and proper adjunction)
pushforward on Hochschild homology is given by integration on
loop maps, i.e., integration on fixed points in equivariant setting

Corollary:

• Grothendieck-Riemann-Roch in Hochschild homology for proper
maps of geometric stacks

• Lefschetz trace formula for D-modules on proper
Deligne-Mumford (derived) stacks

• Atiyah-Bott fixed point theorem for quasicoherent sheaves on
proper Deligne-Mumford (derived) stacks (conjecture of
Frenkel-Ngô)
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Character Formulas

Frobenius character formula: Character of permutation
representation C[X ] is Tr(g) = |X g |: pushforward of constant
function under map L(X/G )→ G

G .

X = G/K : character of induced representation C[G/K ] given by
pushforward along

{g ∈ G , x ∈ X g}
G

Lπ

$$

' // K

K

��
G

G

Flag variety X = G/B  Weyl character formula à la Atiyah-Bott:

B

B
' G̃

G

Lπ=Grothendieck−Springer // G

G



Overview Smooth G-categories Localization Traces Harish Chandra Characters Elliptic Character Sheaves

Character Formulas

Frobenius character formula: Character of permutation
representation C[X ] is Tr(g) = |X g |: pushforward of constant
function under map L(X/G )→ G

G .

X = G/K : character of induced representation C[G/K ] given by
pushforward along

{g ∈ G , x ∈ X g}
G

Lπ

$$

' // K

K

��
G

G

Flag variety X = G/B  Weyl character formula à la Atiyah-Bott:
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Characters of algebraic G -categories

Arguments apply unmodified to sheaves of categories and
categorical representations:

• A = QC (G ) or QC (H\G/H) quasicoherent group or Hecke
algebra (monoidal category)

Theorem: dim(A) = QC ( G
G )

V algebraic G -category // dim(V ) ∈ QC ( G
G ): algebraic

character sheaf.

Character of QC (X ) for a G -space calculated by fixed points map
Lπ : LX/G → G

G .
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Characters of smooth G -categories

• A = D(G ): Natural map dim(A)→ D( G
G ). Calculate characters

by fixed points:

Corollary: The character of D(G/B) is Lπ∗O G̃
G

∈ D( G
G ), the

Grothendieck-Springer — i.e., [Hotta-Kashiwara] the Harish
Chandra system HC on G .

• Characters are microlocal: for a G -space can calculate
dimD(X ) ∈ D( G

G ) near 1G from moment map µ : T ∗X → g∗.

• Characters for Hecke category H = D(B\G/B):

Theorem: dim(H) is the category of Lusztig character sheaves in
D( G

G ) — i.e., differential equations on G
G with same singularities as

HC .
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Harish Chandra Theory of Characters

Harish Chandra introduced a character for admissible
representations M of reductive groups:

• The character ΘM exists as a distribution on G
G

• For M with infinitesimal character [λ], ΘM solves the Harish
Chandra system — i.e., defines a morphism of D-modules on G

G ,

HC[λ] := D/〈z − λ(z)〉z∈Z(Ug)
ΘM // C−∞

• Properties of HC system imply ΘM analytic on G rss , extends to
L1(G ). Beautiful algebraic and geometric formulas for ΘM suggest
it is innately algebraic object.
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Representations as Intertwiners

Admissible representations of real group GR
// Harish Chandra (g,K ) modules for K ⊂ G symmetric

subgroup
// [Beilinson-Bernstein] DK (G/B): K -equivariant (twisted)

D-modules on G/B, i.e., D-modules on

K\G/B ' G\(G/B × G/K )

Suggests an interpretation as intertwiners for smooth G -categories:

Proposition: D(K\G/B) ' HomG (D(G/B),D(G/K ))

Harish Chandra modules are intertwiners between principal series
and symmetric space representations.
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Harish Chandra Characters via Functoriality

Now apply functoriality of dim:

M a (g,K )-module // M defines a G -map

D(G/B)
M // D(G/K ) //

dim(D(G/B))
dim(M) //

'
��

dim(D(G/K ))

'
��

HC[λ]
ΘM // ΞK

Character is a solution of Harish Chandra system valued in
“K-Springer sheaf”

ΞK = (p K
K
→G

G
)∗OK

K
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Properties of the Character

Construction applies to any subgroup K (not necessarily
symmetric).

On the regular semisimple locus of K , ΘM is a section of OK rss

solving pullback of HC system. — e.g., for K = G recover Weyl
character.

Gives refined information and algebraic interpretation of character
over entire group.

Recover the two geometric character formulas of [Schmid-Vilonen]
from general formalism:
• “Weyl-Atiyah-Bott” character formula: comes from trace/fixed
point formalism which described the map dim.
• “Kirillov-Rossman” character formula: comes from compatibility
of characters and microlocalization.



Overview Smooth G-categories Localization Traces Harish Chandra Characters Elliptic Character Sheaves

Properties of the Character

Construction applies to any subgroup K (not necessarily
symmetric).

On the regular semisimple locus of K , ΘM is a section of OK rss

solving pullback of HC system. — e.g., for K = G recover Weyl
character.

Gives refined information and algebraic interpretation of character
over entire group.

Recover the two geometric character formulas of [Schmid-Vilonen]
from general formalism:
• “Weyl-Atiyah-Bott” character formula: comes from trace/fixed
point formalism which described the map dim.
• “Kirillov-Rossman” character formula: comes from compatibility
of characters and microlocalization.



Overview Smooth G-categories Localization Traces Harish Chandra Characters Elliptic Character Sheaves

Properties of the Character

Construction applies to any subgroup K (not necessarily
symmetric).

On the regular semisimple locus of K , ΘM is a section of OK rss

solving pullback of HC system. — e.g., for K = G recover Weyl
character.

Gives refined information and algebraic interpretation of character
over entire group.

Recover the two geometric character formulas of [Schmid-Vilonen]
from general formalism:
• “Weyl-Atiyah-Bott” character formula: comes from trace/fixed
point formalism which described the map dim.
• “Kirillov-Rossman” character formula: comes from compatibility
of characters and microlocalization.



Overview Smooth G-categories Localization Traces Harish Chandra Characters Elliptic Character Sheaves

Properties of the Character

Construction applies to any subgroup K (not necessarily
symmetric).

On the regular semisimple locus of K , ΘM is a section of OK rss

solving pullback of HC system. — e.g., for K = G recover Weyl
character.

Gives refined information and algebraic interpretation of character
over entire group.

Recover the two geometric character formulas of [Schmid-Vilonen]
from general formalism:
• “Weyl-Atiyah-Bott” character formula: comes from trace/fixed
point formalism which described the map dim.
• “Kirillov-Rossman” character formula: comes from compatibility
of characters and microlocalization.



Overview Smooth G-categories Localization Traces Harish Chandra Characters Elliptic Character Sheaves

Traces of Hecke Functors

Goal: Develop theory of characters for smooth LG -categories, in
particular for modules for spherical and affine Hecke categories

Hsph = D(G (O)\LG/G (O))
Satake // QC (BG L)

Haff = D(I\LG/I )
Bezrukavnikov // QC !(StL/G L)

Motivation: Geometric Arthur-Selberg trace formula
C algebraic curve with fixed ramification data, describe character
of category D(BunG (C )) — module for Hsph, Haff , D(LG ) at
places with trivial, tame or full level structure.
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Elliptic Character Sheaves

What are character sheaves on LG ? Hard to define directly as
D-modules on LG

LG . Two proposals:

• Algebraic definition: Consider dim(Haff ), characters of affine
Hecke modules.

• Topological Field Theory definition: q-deform LG
LG to BunG (Eq),

G -bundles on (Tate) elliptic curve Eq = C∗/qZ

// Consider Dnil (BunG (Eq)), D-modules with nilpotent
singular support.

Locally constant in q, can describe monadically in limit q → 0.

Claim (proof in progress): dim(Haff ) ' Dnil (BunG (Eq))

elliptic character sheaves

Langlands duality for Hecke categories //

Corollary: topological geometric Langlands for elliptic curves.
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